Google Play icon

Straight from the source: Bacteria that ‘feast’ on electrical charges

Share
Posted 5 days ago
This news or article is intended for readers with certain scientific or professional knowledge in the field.

Ever since scientists discovered that certain microbes can get their energy from electrical charges, researchers have wondered how they do it.

Bacteria don’t have mouths, so they need another way to bring their fuel into their bodies. New research from Washington University in St. Louis reveals how one such bacteria pulls in electrons straight from an electrode source. The work from the laboratory of Arpita Bose, assistant professor of biology in Arts & Sciences, was published in the scientific journal mBio.

R. palustris TIE-1 builds a conduit to accept electrons across its outer membrane. Image credit: Bose laboratory

“The molecular underpinning of this process has been difficult to unravel until our work,” Bose said. “This is mostly due to the complex nature of the proteins involved in this process. But now, for the first time, we understand how phototrophic microbes can accept electrons from solid and soluble substances.”

Dinesh Gupta, a Ph.D. candidate in the Bose laboratory, is the first author on this new study. “I was excited when we found that these phototrophic bacteria use a novel processing step to regulate the production of key electron transfer protein involved in this process,” Gupta said. “This study will aid in designing a bacterial platform where bacteria can feed on electricity and carbon dioxide to produce value-added compounds such as biofuels.”

Getting the electricity across the outer layer of the bacteria is the key challenge. This barrier is both nonconductive and impermeable to insoluble iron minerals and/or electrodes.

Bose and her collaborators, including Robert Kranz, professor of biology, showed that the naturally occurring strain of Rhodopseudomonas palustris TIE-1 builds a conduit to accept electrons across its outer membrane. The bacteria rely on an iron-containing helper molecule called a deca-heme cytochrome c. By processing this protein, TIE-1 can form an essential bridge to its electron source.

Extracellular electron uptake, or EEU, can help microbes to survive under nutrient-scarce conditions.

Now that Bose has documented these mechanisms behind EEU, she hopes to use it as a biological marker to identify other electricity-eating bacteria in the wild. The findings will help researchers to understand the importance of this functionality in metabolic evolution and microbial ecology.

Source: Washington University in St. Louis

Featured news from related categories:

Technology Org App
Google Play icon
85,377 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  4. The World's Energy Storage Powerhouse (November 1, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email