Google Play icon

Wireless charging—More power, smaller package

Share
Posted November 6, 2019

Oak Ridge National Laboratory researchers created and tested new wireless charging designs that may double the power density, resulting in a lighter weight system compared with existing technologies, while maintaining safety.


New wireless charging coil designs, created and tested by Oak Ridge National Laboratory, include a three-phase system that features rotating magnetic fields between layers of coils. The layered coils transfer power in a more uniform way, allowing for an increase in power density. Credit: Jason Pries/Oak Ridge National Laboratory, U.S. Dept. of Energy

The hands-free method includes a set of two charging coils—one to be affixed underneath an electric vehicle and the other at ground level. When the coils are aligned, the power transferred charges the vehicle’s battery. The team’s designs, described in a recent study, include a three-phase system that features rotating magnetic fields between layers of coils.

“The layered coil design transfers power in a more uniform way, allowing for an increase in power density,” ORNL’s Jason Pries said. The three-phase system has successfully transferred 50 kilowatts with 95% efficiency. “As we scale up the system to transfer up to 300 kilowatts, the specific power is expected to improve as well.” This research brings the team another step closer to fully charging an EV in 20 minutes. 

Source: ORNL

Featured news from related categories:

Technology Org App
Google Play icon
85,468 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  4. Plastic waste may be headed for the microwave (October 18, 2019)
  5. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email