Google Play icon

A Metal Unlike Itself

Share
Posted September 11, 2019
This news or article is intended for readers with certain scientific or professional knowledge in the field.

One of the most fundamental rules physics students learn in college is that metals cannot possess an internal electric field. This makes metals, in a sense, opposite to “ferroelectrics,” which are materials that spontaneously create their own electric fields. However, for nearly 50 years, scientists have wondered if perhaps a metal could act unlike itself and display ferroelectric-like behavior. In 2013, one such candidate, called lithium osmate, or LiOsO3, was discovered.

Now, Caltech researchers have uncovered details of the mechanism by which LiOsO3 acts in ferroelectric ways, a finding that may have implications for the design of new metals in the future for use in computers and other devices.

Image credit: Caltech

Image credit: Caltech

“It’s hard to predict at this stage what this type of material would be used for, but we are on the cutting edge of researching these metals with entirely new properties,” says Nick Laurita, a postdoctoral scholar in physics and lead author of a new paper that appeared in the journal Nature Communications. Laurita works in the laboratory of David Hsieh, a professor of physics at Caltech and a member of the Institute for Quantum Information and Matter (IQIM) at Caltech.

“This presents a pathway for realizing a new type of material that marries two ostensibly incompatible properties, ferroelectricity and metallicity,” says Hsieh.

Ferroelectric materials, which are always insulating, can be found in everything from ultrasound machines to infrared cameras to fuel injectors on diesel engines. “The materials are so useful because you can switch their electric fields from one direction to another,” says Laurita.

For a material to produce an electric field, it must be “polar,” which means that positive and negative charges are separated in space. In a ferroelectric material, polarization occurs due to distortions in the material’s crystal structure, which separate the positive and negative charges.

While metals generally cannot become ferroelectric, two scientists, P.W. Anderson and E.I. Blount, suggested in 1965 that some metals may exhibit certain ferroelectric-like properties. In particular, they said, a metal’s crystal structure might exhibit polar atomic distortions similar to what occurs in insulating ferroelectrics.

After the metal LiOsO3 was discovered in 2013, researchers came up with new theories to explain in more detail how this might work. They predicted that the free-roaming electrons in the metal must be decoupled from their distorted atoms—otherwise, the electrons would arrange themselves in such a way as to zero out any electric fields and no distortions would occur.

In other words, the electrons must be, in a sense, “unaware” of the atomic distortions happening nearby.

In their latest paper, Laurita, Hsieh, and their colleagues show this to be the case using a method called ultrafast laser spectroscopy. In this technique, an initial pulse excites samples to high-energy and then a second, weak laser pulse tracks how the electrons in the sample lose their energy as a function of time.

“What we found is that the electrons in LiOsO3 only gave up their energy to vibrations in some particular directions but not the direction needed for polarization, thereby revealing that the electrons were decoupled from the vibrations causing the ferroelectricity,” says Laurita. “It’s as if you’ve thrown a pebble in a pond, and the ripples don’t propagate outwards in a circle but only along certain directions. This shows how ferroelectric-type behaviors can occur in metals.”

“It’s exciting that the Anderson-Blount mechanism put forth decades ago holds true in this unusual material,” says Hsieh.

Written by Whitney Clavin

Source: Caltech

Featured news from related categories:

Technology Org App
Google Play icon
86,173 science & technology articles

Most Popular Articles

  1. Scientists Reverse Dementia in Mice with Anti Inflammatory Drugs (December 5, 2019)
  2. NASA Scientists Confirm Water Vapor on Europa (November 19, 2019)
  3. How Do We Colonize Ceres? (November 21, 2019)
  4. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  5. Scientists created a wireless battery free computer input device (December 1, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email