Google Play icon

Gene regulation behind the choice of the correct receptor for olfaction

Share
Posted August 16, 2019
This news or article is intended for readers with certain scientific or professional knowledge in the field.

Scientists at Tokyo Institute of Technology (Tokyo Tech) have uncovered the genetics behind two distinct types of olfactory sensory neurons; the so called “class I olfactory neurons” that has persisted from aquatic to terrestrial animals and the “class II olfactory neurons” that only terrestrial animals possess.

Image credit: Tokyo Institute of Technology

Have you ever wondered how marine animals smell the world, and how the olfactory system evolved from aquatic to terrestrial animals? There are two different classes of odorant receptor (OR) genes that can be expressed in olfactory sensory neurons: “class I” first identified in fish and frogs and then found to be common to all vertebrates, and “class II”, which is specific to terrestrial animals. How does the olfactory sensory neuron know which class of OR to express?

Prof. Junji Hirota from the Tokyo Institute of Technology explains:

“Decision between two classes of ORs is critical to both the anatomical and functional organization of olfactory system. […] However, while we have known that two classes of ORs exist for more than 20 years, the mechanisms that regulate the OR class choice have remained an open question.”

To understand the OR selection process, he and a group of investigators set out to unveil the factors that make the decision between two classes of ORs.

The researchers discovered for the first time that Bcl11b, a transcription factor, determines which class of OR gene is expressed in olfactory neurons. In the absence of Bcl11b, olfactory neurons are fated to class I. But the fate can be switched to class II in the presence of Bcl11b. This also corroborates the idea that class I OR is the default OR, which undergoes a transcriptional switch in the presence of Bcl11b.

A similar mechanism takes place in frogs. In tadpoles, olfactory neurons express class I ORs in the so called “water-nose” until they undergo metamorphosis, when a part of their olfactory epithelium starts expressing Bcl11b, and thus start expressing class II ORs, which becomes “air-nose” in adult frogs.

Figure 1. Model of the OR class specification. Tadpoles, which express the so called “water-nose” class I genes until they undergo metamorphosis. This this point, a part of their olfactory epithelium starts expressing Bcl11b, resulting in the expression of class II, or “air-nose” genes, as well. Mice, on the other hand, expresses Bcl11b and leads to class II OR expression. Image credit: Tokyo Institute of Technology

Further, the scientists demonstrated that genetically manipulating Bcl11b expression in mice not only altered the class of OR gene, but it also changed the corresponding neural wiring, altering odor perception in the animals.

By manipulating the expression of this gene in mice, the researchers generated mice with “class I-dominant” and “class II-dominant” noses. Interestingly, because these two different OR classes are linked to the entire odor perception mechanism of the animal, the mutant mice perceived aversive odors differently, i.e., “class I-dominant” mice become hyper-sensitive to decayed food odor but less sensitive to predator’s odor.

Figure 2. Schematic representation of the class-specific expression of Bcl11b. Because the two different OR classes are linked to the entire odor perception mechanism of the animal, the mutant mice perceived aversive odors (i.e. the smell of predators [TMT] and spoiled food [2MBA]) differently. Image credit: Tokyo Institute of Technology

“Our findings unveil a long-standing mystery in OR gene regulation, a molecular mechanism of the OR class choice as well as an essential role of Bcl11b for the functional organization of olfactory system by integrating genetic, cellular, and behavioral analyses, and provide important insights on the terrestrial adaption of olfaction during evolution,” concludes Prof. Hirota.

Reference: Takayuki Enomoto 1,2, Hidefumi Nishida 2, Tetsuo Iwata 1, Akito Fujita 2, Kanako Nakayama 2, Takahiro Kashiwagi 2, Yasue Hatanaka 1, Hiro Kondo 2, Rei Kajitani 2, Takehiko Itoh 2, Makoto Ohmoto 3, Ichiro Matsumoto 3 & Junji Hirota 1,2. Bcl11b controls odorant receptor class choice in mice. In Communications Biology. DOI: 10.1038/s42003-019-0536-x.

Source: Tokyo Institute of Technology

Featured news from related categories:

Technology Org App
Google Play icon
83,374 science & technology articles

Most Popular Articles

  1. Bright Fireball Explodes Over Ontario, Meteorite Fragments Might Have Reached the Ground (August 5, 2019)
  2. Why older people smell the way they do? Japanese have even a special word for it (August 4, 2019)
  3. Terraforming the Surface of Mars with Silica Aerogel? (July 23, 2019)
  4. Moisturizers May Be Turning Your Skin Into ‘Swiss Cheese’ (4 days old)
  5. Swarm Autonomy Tested in Second Major DARPA OFFSET Field Experiment (August 8, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email