Google Play icon

Fusion—Tungsten rising

Share
Posted August 2, 2019

Using additive manufacturing, scientists experimenting with tungsten at Oak Ridge National Laboratory hope to unlock new potential of the high-performance heat-transferring material used to protect components from the plasma inside a fusion reactor.

Using electron beam melting, ORNL researchers are building innovative tungsten fusion components with complex, unique geometries that can’t be made through traditional manufacturing. The electron beam allows for better control of heat distribution as tungsten is 3D printed layer by layer. Credit: Betsy Ellis/Oak Ridge National Laboratory, U.S. Dept. of Energy.

Fusion requires hydrogen isotopes to reach millions of degrees. Tungsten, the metal with the highest melting point, holds promise to withstand extreme temperatures at the edge of this reaction, yet it is brittle and difficult to machine. The ORNL team is using an additive manufacturing technique called electron beam melting to build innovative tungsten fusion components with complex, unique geometries that can’t be made through traditional manufacturing.

“The electron beam allows us to better control the heat distribution as tungsten is printed layer by layer,” said ORNL’s Betsy Ellis who led the initial experiments. “After more testing, this method may result in a better quality, full-density structure that’s less prone to cracking.”

Source: ORNL

Featured news from related categories:

Technology Org App
Google Play icon
85,611 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  4. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  5. ‘Artificial leaf’ successfully produces clean gas (October 22, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email