Google Play icon

Researchers give standard light microscopes an upgrade to see inside cells

Posted July 23, 2019

Researchers can now see the molecules inside cells using standard light microscopes. Traditionally, light microscopes could only reveal the shape of large structures inside cells, and not the distribution of molecules.

The microscope upgrade is an attachable unit that researchers call the “molecular-contrast unit,” which contains an infrared laser light source. No specialized preparation of the cells, for example labeling with fluorescent dyes, is required.

This image of two human cells was made by combining the molecular density information obtained by the molecular-contrast unit (MC, yellow) and the image taken by the conventional phase-contrast portion of a standard light microscope (PC, greyscale). Image credit: Takuro Ideguchi, CC-BY.

The new molecular-contrast unit allows standard light microscopes to “see” where specific molecules are in the cell by searching for the vibration, or heat signal, of the desired molecule. The laser light gives extra energy to the target molecules and causes them to vibrate. Different molecules can be selected by using different wavelengths of infrared laser light.

“We believe the concept of upgrading existing, widespread standard optical microscopes to become molecular-sensitive will expand the research capabilities of various end users,” said Associate Professor Takuro Ideguchi from the University of Tokyo Institute for Photon Science and Technology.

Other methods to see the details of molecules inside cells without adding special dyes already exist, but they require specialized and expensive microscopes or use high-intensity light that can damage the cells. For example, those methods include Raman-scattering and infrared-absorption spectroscopy.

“Label-free and damageless molecular microscopic observation, which fulfills an important need in the biomedical field, should be useful for observation of intracellular drug delivery, quality assessment of regenerative cells and tissues, and other essential research functions,” said Ideguchi.

“Also, since our method translates the local heating of the sample to the molecular contrast, it could also serve as a tool to probe the local thermal parameters within biological cells,” he added.

So far, researchers have tested their technique using two different types of tiny plastic and silica beads and human cells grown in a dish that were killed and preserved before experiments.

“We were pleased to visualize the protein distribution in biological cells. The protein seemed to concentrate around the cells’ nuclei, which could represent the existence of some intracellular structures [involved in the synthesis and transport of proteins], such as the endoplasmic reticulum and Golgi apparatus,” said Ideguchi.

Source: University of Tokyo

Featured news from related categories:

Technology Org App
Google Play icon
87,514 science & technology articles

Most Popular Articles

  1. An 18 carat gold nugget made of plastic (January 13, 2020)
  2. Anti Solar Cells: A Photovoltaic Cell That Works at Night (February 3, 2020)
  3. Toyota Raize is a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  4. Nuclear waste could be recycled for diamond battery power (January 21, 2020)
  5. Physicist Proposes a Testable Theory Stating that Information has Mass and could Account for Universe s Dark Matter (January 24, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email