Google Play icon

New CRISPR Lab to Accelerate Drug Discovery, Advance Genomic Research

Share
Posted June 14, 2019

GlaxoSmithKline plc (GSK) has launched a five-year, $67 million collaboration with the San Francisco and Berkeley campuses of the University of California to build a state-of-the-art laboratory that will use CRISPR technologies to explore how genes cause disease and to rapidly accelerate the discovery of new medicines.

Known as the Laboratory for Genomic Research (LGR), the partnership will be headed by Dr. Hal Barron, chief scientific officer and president, R&D, at GSK; UCSF’s Jonathan Weissman, PhD, professor of cellular and molecular pharmacology, who has pioneered new applications of CRISPR for biological research; and CRISPR co-inventor Jennifer Doudna, PhD, professor of biochemistry, biophysics and structural biology at UC Berkeley.

CRISPR-Cas9 is a customizable tool that lets scientists cut and insert small pieces of DNA at precise areas along a DNA strand. This lets scientists study our genes in a specific, targeted way. Credit: Ernesto del Aguila III, National Human Genome Research Institute, NIH via Flickr, Public Domain

The new lab will be housed on Illinois Street adjacent to UCSF’s Mission Bay campus. Once fully established, it will provide facilities for 24 University employees funded by GSK as well as up to 14 GSK employees, with a focus on immunology, neuroscience, and oncology. GSK’s machine learning group will build computational pipelines to analyze the extensive data the LGR will produce.

“Over the last seven years, CRISPR has transformed academic research, but until the LGR, we haven’t had a focused effort to catalyze the kind of research we know will lead to new innovation using this CRISPR tool,” said Doudna. “The LGR is about building that space where creative science is partnered with the development of robust technology that will help develop tomorrow’s drugs. I think we’re going to be able to do science that none of us can even imagine today.”

With the recent explosion of information from human genetics, scientists need powerful tools to understand why small changes in a person’s genetic makeup can increase the risk of diseases, an area of science called functional genomics. The most powerful tool in functional genomics, CRISPR, allows this to be done at a scale once thought impossible. Through this research, scientists can discover and develop novel therapies that have a higher likelihood of becoming medicines.

“Technology is key to our innovation strategy at GSK, and CRISPR is one of the most important technologies of our time,” said Barron. “With the expertise of Jennifer and Jonathan helping to steer the LGR, the mission of the lab is to advance our scientific understanding of the relationship between genes and disease to help find better medicines faster.”

The LGR represents a novel hybrid model that brings together industrial and academic researchers under a single roof working on projects both together and independently.  The outputs of those research projects will be focused on technologies, new drug targets and biological mechanisms that will foster both academic and industrial advances.

The new laboratory will also be a resource for investigators at both UC campuses, who can access and use its technology to answer their own biomedical or other biological questions, and to develop new tools that explore how genes work.

“The LGR screening center will be available to labs at UCSF and Berkeley,” Weissman said, “and having access to it will give our scientists opportunities to advance their research in ways that would be very hard for them to do in their own labs.”

The LGR will receive up to $67 million in funding over a five-year period, which will include facilities for 24 full-time university employees funded by GSK, plus up to 14 full-time GSK employees. With a focus on immunology, oncology and neuroscience, the laboratory will be adjacent to the UCSF Mission Bay campus in San Francisco.

GSK’s artificial intelligence and machine learning group will also be involved in building the necessary computational pipelines to analyze data. The LGR aims to automate and scale up existing CRISPR approaches so that this work can be done much more rapidly. Ultimately the goal is to deepen our understanding of genetics and discover new targets, and to create next-generation technologies that will become future standard practice for pharma industry.

In keeping with UC’s public mission, the tools that are developed in the lab will be described in published papers, subject to intellectual property provisions, and will be available for use by other academic and non-profit labs.

“One of our key goals is to advance the field overall and make these tools as broadly available as possible,” Weissman said.

Source: UCSF

Featured news from related categories:

Technology Org App
Google Play icon
83,316 science & technology articles

Most Popular Articles

  1. Bright Fireball Explodes Over Ontario, Meteorite Fragments Might Have Reached the Ground (August 5, 2019)
  2. Why older people smell the way they do? Japanese have even a special word for it (August 4, 2019)
  3. Terraforming the Surface of Mars with Silica Aerogel? (July 23, 2019)
  4. Moisturizers May Be Turning Your Skin Into ‘Swiss Cheese’ (2 days old)
  5. Swarm Autonomy Tested in Second Major DARPA OFFSET Field Experiment (August 8, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email