Google Play icon

Dangerous Pathogens Use This Sophisticated Machinery to Infect Hosts

Share
Posted May 20, 2019
This news or article is intended for readers with certain scientific or professional knowledge in the field.

Gastric cancer, Q fever, Legionnaires’ disease, whooping cough—though the infectious bacteria that cause these dangerous diseases are each different, they all utilize the same molecular machinery to infect human cells. Bacteria use this machinery, called a Type IV secretion system (T4SS), to inject toxic molecules into cells and also to spread genes for antibiotic resistance to fellow bacteria.

Now, researchers at Caltech have revealed the 3D molecular architecture of the T4SS from the human pathogen Legionella pneumophila with unprecedented details. This could in the future enable the development of precisely targeted antibiotics for the aforementioned diseases.

A new, detailed structural model of a Type IV secretion system reveals how this complex bacterial machine assembles. Credit: Courtesy of the Jensen laboratory

A new, detailed structural model of a Type IV secretion system reveals how this complex bacterial machine assembles. Credit: Courtesy of the Jensen laboratory

The work was done in the laboratory of Grant Jensen, professor of biophysics and biology and Howard Hughes Medical Institute investigator, in collaboration with the laboratory of Joseph Vogel at the Washington University School of Medicine in St. Louis (WUSTL). A paper describing the research appeared online in the journal Nature Microbiology.

There are nine different types of bacterial secretion systems, Type IV being the most elaborate and versatile. A T4SS can ferry a wide variety of toxic molecules—up to 300 at once—from a bacterium into its cellular victim,hijacking cellular functions and overwhelming the cell’s defenses.

In 2017, Caltech postdoctoral scholar Debnath Ghosal and his collaborators used a technique called electron cryotomography to reveal, for the first time, the overall low-resolution architecture of the T4SS in Legionella, the bacteria that causes Legionnaires’ disease, a severe and often lethal form of pneumonia.

Ghosal, along with Kwangcheol Jeong of WUSTL and their colleagues, have now made a detailed structural model of this dynamic multi-component machine. The team also made precise perturbations to the bacterium’s genes to study mutant versions of the T4SS, revealing how this complex machine organizes and assembles.

The model revealed that the secretion system is composed of a distinct chamber and a long channel, like the chamber and barrel of a gun. Characterizing these and other components of the T4SS could enable the development of precisely targeted antibiotics.

Current antibiotics act broadly and wipe out bacteria throughout the body, including the beneficial microorganisms that live in our gut. In the future, antibiotics could be designed to block only the toxin delivery systems (such as the T4SS) of harmful pathogens, rendering the bacteria inert and harmless without perturbing the body’s so-called “good bacteria.”

Written by Lori Dajose

Source: Caltech

Featured news from related categories:

Technology Org App
Google Play icon
84,082 science & technology articles

Most Popular Articles

  1. Efficiency of solar panels could be improved without changing them at all (September 2, 2019)
  2. Diesel is saved? Volkswagen found a way to reduce NOx emissions by 80% (September 3, 2019)
  3. The famous old Titanic is disappearing into time - a new expedition observed the corrosion (September 2, 2019)
  4. The Time Is Now for Precision Patient Monitoring (July 3, 2019)
  5. Europe and US are Going to Try and Deflect an Asteroid (September 6, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email