Google Play icon

Unravelling how bacterial ‘machines’ self-assemble

Share
Posted May 9, 2019

Scientists at the University of Liverpool have gained new insights into the self-assembling properties of unique protein ‘machines’ that help cyanobacteria boost their photosynthetic capability.

The research, which is published in the journal Plant Cell, could help inform the design and engineering of new nanotechnologies to improve crop yields and biomass production.

Image credit: University of Liverpool

Image credit: University of Liverpool

Cyanobacteria have evolved specialised organelles, called carboxysomes, for converting carbon dioxide to sugar – a process known as carbon fixation. Encased by a protein outer shell, carboxysomes contain nanoscale polyhedral protein shells filled with the carbon-fixing enzyme RuBisCO.

“How hundreds of proteins self-assemble to form a three-dimensional compartment architecture is a fundamental question in understanding the formation and regulation of biological machinery. In addition, the knowledge will spark bioinspired design and engineering of functional organelles in biotechnological applications, using synthetic biology approaches,” said Professor Luning Liu from the University’s Institute of Integrative Biology, who led the research.

In collaboration with Professor Mark Leake at the University of York, the researchers used advanced microscopic techniques to explore the exact abundance of individual building proteins that form a single carboxysome. Their findings reveal that the size and structure of carboxysomes is not constant and adjusts in response to environmental changes during cell growth.

“This is the first time the accurate content of carboxysome proteins at the single organelle level has been studied,” added Professor Liu. “It has renewed our understanding of the self-assembling and regulation of natural systems. As there is an increasing interest in installing active carboxysomes into crop plants to enhance photosynthesis, the knowledge learned from natural carboxysome construction will suggest the feasible way to produce functional carboxysomes in plants, with the ultimate goal of boosting crop yields.”

Source: University of Liverpool

Featured news from related categories:

Technology Org App
Google Play icon
83,316 science & technology articles

Most Popular Articles

  1. Bright Fireball Explodes Over Ontario, Meteorite Fragments Might Have Reached the Ground (August 5, 2019)
  2. Why older people smell the way they do? Japanese have even a special word for it (August 4, 2019)
  3. Terraforming the Surface of Mars with Silica Aerogel? (July 23, 2019)
  4. Swarm Autonomy Tested in Second Major DARPA OFFSET Field Experiment (August 8, 2019)
  5. Dark Matter may Predate even the Big Bang Itself, New Study Suggest (August 8, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email