Google Play icon

“Robat” Uses Sound to Navigate and Map Unique Environments

Share
Posted September 12, 2018

The “Robat” is a fully autonomous terrestrial robot with bat-like qualities that uses echolocation to move through novel environments while mapping them based only on sound. It was developed at Tel Aviv University.

Bats use echolocation to map novel environments, navigating them by emitting sound then extracting information from the echoes reflected by objects in their surroundings. Many theories have been proposed to explain how bats harness sonar in order to navigate, but few attempts have been made to build a robot that mimics a bat’s abilities.

The Robat is a fully-autonomous bat-like terrestrial robot that uses echolocation to navigate its environment. Credit: Itamar Eliakim, AFTAU

The Robat is a fully-autonomous bat-like terrestrial robot that uses echolocation to navigate its environment. Credit: Itamar Eliakim, AFTAU

A TAU study about the invention was published in PLOS Computational Biology.

TAU graduate student Itamar Eliakim developed a robot that uses a biological bat-like approach, emitting sound and analyzing the returning echoes to generate a map of space. Prof. Yossi Yovel of TAU’s Department of Zoology and Dr. Gabor Kosa of TAU’s School of Mechanical Engineering serve as Mr. Eliakim’s advisors.

“Our Robat is the first fully autonomous, bat-like biorobot that moves through a novel environment while mapping it solely based on echo information. This information delineates the borders of objects and the free paths between them,” says Eliakim. “We’ve been able to demonstrate the great potential of using sound in future robotic applications.”

The Robat is equipped with an ultrasonic speaker that produces frequency-modulated chirps at a rate typically used by bats, as well as two ultrasonic microphones that serve as the robot’s ears. It classifies the borders and shapes of the objects it encounters with an artificial neural network, creating a rich, accurate map of its environment while avoiding obstacles. For example, when reaching a dead end, the robot uses its classification abilities to determine whether it is blocked by a wall or by a plant through which it could pass.

Source: AFTAU

Featured news from related categories:

Technology Org App
Google Play icon
86,881 science & technology articles

Most Popular Articles

  1. You Might Not Need a Hybrid Car If This Invention Works (January 11, 2020)
  2. Toyota Raize a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  3. An 18 carat gold nugget made of plastic (January 13, 2020)
  4. Human body temperature has decreased in United States, study finds (January 10, 2020)
  5. Often derided as pests, deer and elk can help young Douglas fir trees under some conditions (December 5, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email