Google Play icon

In borophene, boundaries are no barrier

Share
Posted July 18, 2018

Borophene, the atomically flat form of boron with unique properties, is even more interesting when different forms of the material mix and mingle, according to scientists at Rice and Northwestern universities.

Scientists at the institutions made and analyzed borophene with different lattice arrangements and discovered how amenable the varied structures are to combining into new crystal-like forms. These, they indicated, have properties electronics manufacturers may wish to explore.

Scanning electron microscope images reveal a borophene sheet containing domains with different periodic assemblies of known hexagon-to-triangle ratios of 1-to-5 and 1-to-6 rows, along with two previously unobserved phases of 7-to-36 and 4-to-21. Scientists at Rice and Northwestern universities made the first detailed analysis of ordered defect structures in borophene. Image credit: Hersam Research Group

The research led by Rice materials theorist Boris Yakobson and Northwestern materials scientist Mark Hersam appears in Nature Materials.

Borophene differs from graphene and other 2D materials in an important way: It doesn’t appear in nature. When graphene was discovered, it was famously yanked from a piece of graphite with Scotch tape. But semiconducting bulk boron doesn’t have layers, so all borophene is synthetic.

Also unlike graphene, in which atoms connect to form chicken wire-like hexagons, borophene forms as linked triangles. Periodically, atoms go missing from the grid and leave hexagonal vacancies. The labs investigated forms of borophene with “hollow hexagon” concentrations of one per every five triangles and one per every six in the lattice.

These are the most common phases the Northwestern lab observed when it created borophene on a silver substrate throughatomic boron deposition in an ultrahigh vacuum, according to the researchers, but “perfect” borophene arrays weren’t the target of the study.

A scanning electron microscope image (top) shows two periodic assemblies of borophene, a synthetic, two-dimensional array of boron atoms, that join at a line defect. Computational models in the middle and bottom images correspond to the regions, with 1-to-6 borophene in red and 1-to-5 in blue. Researchers at Rice and Northwestern universities determined that phases of borophene line up in such a way that the material’s conductive, metallic nature is maintained. Illustration by Luqing Wang

The lab found that at temperatures between 440 and 470 degrees Celsius (824-878 degrees Fahrenheit), both 1-to-5 and 1-to-6 phases grew simultaneously on the silver substrate, which acts as a template that guides the deposition of atoms into aligned phases. The labs’ interest was heightened by what happened where these domains met. Unlike what they had observed in graphene, the atoms easily accommodated each other at the boundaries and adopted the structures of their neighbors.

These boundary adjustments gave rise to more exotic – but still metallic – forms of borophene, with ratios such as 4-to-21 and 7-to-36 appearing among the parallel phases.

“In graphene, these boundaries would be disordered structures, but in borophene the line defects, in effect, are a perfect structure for each other,” said Rice graduate student Luqing Wang, who led a theoretical analysis of atom-level energies to explain the observations. “The intermixing between the phases is very different from what we see in other 2D materials.”

“While we did expect some intermixing between the 1-to-5 and 1-to-6 phases, the seamless alignment and ordering into periodic structures was surprising,” Hersam said. “In the two-dimensional limit, boron has proven to be an exceptionally rich and interesting materials system.”

Wang’s density functional theory calculations revealed the metallic nature of the line defects; this implied that unlike insulating defects in otherwise metallic graphene, they have minimal impact on the material’s electronic properties at room temperature. At low temperature, the material shows evidence of a charge density wave, a highly ordered flow of electrons.

Theoretical calculations also suggested subtle differences in stiffness, thermal conductivity and electrochemical properties among borophene phases, which also suggested the material can be tuned for applications.

Scanning tunneling electron microscope images of line defects in 1-to-6 and 1-to-5 borophene, indicated by blue and red arrowheads, respectively, show how the defects align in a way that preserves the synthetic material’s metallic nature. Scientists at Rice and Northwestern universities made the first detailed analysis of ordered defect structures in borophene. Image credit: Hersam Research Group

“The unique polymorphisms of borophene are on full display in this study,” Yakobson said. “This suggests intriguing interplay in the material’s electronic structure through charge density waves, which may lead to tantalizing switchable electronics.”

“As an atomically thin material, borophene has properties that should be a function of the substrate, neighboring materials and surface chemistry,” Hersam said. “We hope to gain further control over its properties through chemical functionalization and/or integration with other materials into heterostructures.”

Source: Rice University

Featured news from related categories:

Technology Org App
Google Play icon
85,465 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. The World's Energy Storage Powerhouse (November 1, 2019)
  4. Plastic waste may be headed for the microwave (October 18, 2019)
  5. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email