Google Play icon

Battling Bubbles: How Plants Protect Themselves from Killer Fungus

Share
Posted May 18, 2018

In the battle between plants and pathogens, molecules called small RNAs are coveted weapons used by both invaders and defenders.

In a paper published in the journal Science, researchers at the University of California, Riverside report how plants package and deliver the small RNAs, or sRNAs, they use to fight back against plant pathogens. The study focused on Botrytis cinerea, a fungus that causes a grey mold disease in almost all fruits, vegetables, and many flowers.

Botrytis cinerea is a costly gray mold that affects many fruits, vegetables and flowers. Image credit: Rasbak via Wikimedia, CC-BY-SA-3.0

Hailing Jin, a professor of microbiology and plant pathology in UCR’s College of Natural and Agricultural Sciences, has been studying the role of sRNAs in plant immunity and disease. Her goal is to develop effective and environmentally friendly strategies to control plant diseases and to secure food production.

During a phenomenon called cross-kingdom RNA interference, some pathogens and plants exchange sRNAs during their interactions with each other. Small RNAs are molecules that regulate biological processes by interfering with gene expression. While pathogens deliver sRNAs into plant cells to suppress host immunity, plants transfer sRNAs into pathogens to inhibit their ability to cause infection. Until now, it remained unknown how small RNAs move across the cellular boundaries between hosts and pathogens.

Jin’s team found that during infection with Botrytis cinerea, plant cells package sRNAs inside bubble-like sacs, called exosomes, which are sent out of the plant cells and accumulate near the site of infection. These ‘battling bubbles’ are taken up by the fungal cells efficiently, where the transferred host sRNAs inhibit the expression of fungal genes needed to cause the disease. The research was performed using Arabidopsis thaliana, a small flowering plant widely used as a model species because it is easy to grow and study.

“The discovery of the role of exosomes in cross-kingdom RNA interference will help us develop effective delivery methods to target plant pathogens with artificial sRNAs, with the goal of controlling plant diseases in crops, said Jin, who holds the Cy Mouradick Endowed Chair at UCR and is a member of the university’s Institute for Integrative Genome Biology.

Jin said her group is also characterizing the pathogen targets of the protective sRNAs transferred from the plant to help identify new genes involved in pathogen virulence.

Source: UC Riverside

Featured news from related categories:

Technology Org App
Google Play icon
87,029 science & technology articles

Most Popular Articles

  1. You Might Not Need a Hybrid Car If This Invention Works (January 11, 2020)
  2. Toyota Raize a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  3. An 18 carat gold nugget made of plastic (January 13, 2020)
  4. Human body temperature has decreased in United States, study finds (January 10, 2020)
  5. Donkeys actually prefer living in hot climate zones (January 6, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email