Google Play icon

‘Wiggling and jiggling’: new study helps explain how organisms can evolve to live at different temperatures

Share
Posted March 23, 2018

Enzyme catalysis is essential to life, and this research sheds light on how enzymes have evolved and adapted, enabling organisms to evolve to live at different temperatures.

This is the first study to link the enzyme’s dance (in atomic detail) directly to its optimal temperature. These findings provide new insights into how the structure of enzymes is related to its role as a catalyst and importantly, could provide a route to designing better biocatalysts for use in chemical reactions in industrial processes, such as the production of drugs. It also hints at why proteins were eventually preferred by evolution over nucleic acids as catalysts in biology: proteins offer much more ability to ‘tune’ their ‘jiggling and wiggling’ and their response to chemical reactions.

Dr Marc van der Kamp and Professor Adrian Mulholland (Bristol) worked with Professor Vic Arcus (Waikoto, NZ) and colleagues, to find how the ‘wiggling and jiggling’, or the dynamics of enzymes is ‘tuned down’ during the reaction they catalyse. As a result, the heat capacity of enzymes* changes during the reaction, and it is the size of this change that is the critical factor in determining the temperature at which the enzyme works best.

So what causes the heat capacity of an enzyme to change during the reaction? And how is this different in different enzymes, so that their catalytic activities are tuned to suit the organism and the temperature of the environment they live in?

An enzyme’s dance during the biological reaction it promotes determines at which temperature the enzyme works best. Illustration by Dr Marc van der Kamp and Michael Connolly

Dr Van der Kamp said: “Our computer simulations of the ‘wiggling and jiggling’ of enzymes at different stages in the reaction tells us how these structural fluctuations give rise to the difference in heat capacity, and thereby can predict the optimum temperature of an enzyme. Our work demonstrated that we can do this accurately for two completely different enzymes, by comparing to experimental data.

“What is fascinating to see is that the whole enzyme structure is important: the ‘dance’ does not only change close to where the chemical reaction takes place, but also in parts much further away. This has consequences for evolution: the combination of the enzyme structure and the reaction the enzyme catalyses will define its optimal working temperature. A subtle change in structure can change the ‘dance’.”

The work helps explain how organisms can evolve to live at different temperatures, and hints at why proteins were eventually preferred by evolution over nucleic acids as catalysts in biology: proteins offer much more ability to ‘tune’ their ‘jiggling and wiggling’ and their response to chemical reactions.

Source: University of Bristol

Featured news from related categories:

Technology Org App
Google Play icon
85,468 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  4. Plastic waste may be headed for the microwave (October 18, 2019)
  5. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email