Google Play icon

ExoMars: Surfing complete

Share
Posted February 22, 2018

Slowed by skimming through the very top of the upper atmosphere, ESA’s ExoMars has lowered itself into a planet-hugging orbit and is about ready to begin sniffing the Red Planet for methane.The ExoMars Trace Gas Orbiter arrived at Mars in October 2016 to investigate the potentially biological or geological origin of trace gases in the atmosphere.

It will also serve as a relay, connecting rovers on the surface with their controllers on Earth.

But before any of this could get underway, the spacecraft had to transform its initial, highly elliptical four-day orbit of about 98 000 x 200 km into the final, much lower and circular path at about 400 km.

Terrifically delicate

“Since March 2017, we’ve been conducting a terrifically delicate ‘aerobraking’ campaign, during which we commanded it to dip into the wispy, upper-most tendrils of the atmosphere once per revolution, slowing the craft and lowering its orbit,” says ESA flight director Michel Denis.

“This took advantage of the faint drag on the solar wings, steadily transforming the orbit. It’s been a major challenge for the mission teams supported by European industry, but they’ve done an excellent job and we’ve reached our initial goal.“During some orbits, we were just 103 km above Mars, which is incredibly close.”

The end of this effort came at 17:20 GMT on 20 February, when the craft fired its thrusters for about 16 minutes to raise the closest approach to the surface to about 200 km, well out of the atmosphere. This effectively ended the aerobraking campaign, leaving it in an orbit of about 1050 x 200 km.

Employing interplanetary experience

 “We already acquired experience with aerobraking on a test basis at the end of the Venus Express mission, which was not designed for aerobraking, in 2014,” says spacecraft operations manager Peter Schmitz.

Venus Express aerobraking 2014

“But this is the first time ESA has used the technique to achieve a routine orbit around another planet – and ExoMars was specifically designed for this.”

Aerobraking around an alien planet that is, typically, 225 million km away is an incredibly delicate undertaking. The thin upper atmosphere provides only gentle deceleration – at most some 17 mm/s each second. How small is this?

If you braked your car at this rate from an initial speed of 50 km/h to stop at a junction, you’d have to start 6 km in advance.

“Aerobraking works only because we spent significant time in the atmosphere during each orbit, and then repeated this over 950 times,” says Michel.

“Over a year, we’ve reduced the speed of the spacecraft by an enormous 3600 km/h, lowering its orbit by the necessary amount.”

Source: ESA

 

Featured news from related categories:

Technology Org App
Google Play icon
86,032 science & technology articles

Most Popular Articles

  1. NASA Scientists Confirm Water Vapor on Europa (November 19, 2019)
  2. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  3. How Do We Colonize Ceres? (November 21, 2019)
  4. This Artificial Leaf Turns Atmospheric Carbon Dioxide Into Fuel (November 8, 2019)
  5. Scientists created a wireless battery free computer input device (December 1, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email