Google Play icon

In Frogs, Early Activity of Gut Microbiome Shapes Later Health

Share
Posted July 21, 2017

Biologists at the University of Connecticut and University of South Florida have found that a crucial window in the development of tadpoles may influence a frog’s ability to fight infectious diseases as an adult.

The scientists showed that an early-life disruption of the gut and skin bacterial communities of tadpoles later affects the adult frogs’ ability to fight off parasitic gut worms. Led by Sarah Knutie of UConn, the team published its findings in the journal Nature Communications.

“Our study found that a disruption of bacteria in tadpoles has enduring negative effects on how adult frogs deal with their parasites,” Knutie said. “These results suggest that preventing early-life disruptions of bacteria by factors such as nutrition, antibiotics, and pollution, might confer protection against diseases later in life.”

Testing the effects of early-life disruption of the microbiota on later-life resistance to infections. Photo by Mark Yokoyama

The project is significant not only for the insight it provides in threats to the health of the world’s frogs, but in its potential applicability to understanding the immune systems of mammals and even humans.

The impact of a healthy bacterial community in the gut is an increasing focus of scientists looking to understand a wide range of ailments in many species, including humans. Previous research has found that an early-life disruption of the gut microbiota in mammals can result in a hyper-reactive immune system that may increase the subsequent risk of immune-related health issues, such as allergies and autoimmune diseases.

In their experiments, the scientific team manipulated the bacterial communities of Cuban tree frog tadpoles and then exposed them to parasites later in life. The tadpoles were either raised in natural pond water or one of three other treatments to manipulate the bacterial communities: sterile pond water, sterile pond water with short-term antibiotics, or sterile pond water with long-term antibiotics.

Adult frogs that had reduced bacterial diversity as tadpoles had three times more parasites than adults that did not have their microbiota disrupted as tadpoles, the study found. Those results suggest that preventing early-life disruptions of host-associated bacterial communities might reduce infection risk later in life.

“We think that the microbiota of juveniles likely played a role in priming the immune system against parasite establishment,” the researchers wrote. “We found that the relative abundance of certain bacteria … in juveniles was positively correlated with parasite resistance in adulthood.”

Source: University of Connecticut

Featured news from related categories:

Technology Org App
Google Play icon
84,082 science & technology articles

Most Popular Articles

  1. Efficiency of solar panels could be improved without changing them at all (September 2, 2019)
  2. Diesel is saved? Volkswagen found a way to reduce NOx emissions by 80% (September 3, 2019)
  3. The famous old Titanic is disappearing into time - a new expedition observed the corrosion (September 2, 2019)
  4. The Time Is Now for Precision Patient Monitoring (July 3, 2019)
  5. Europe and US are Going to Try and Deflect an Asteroid (September 6, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email