Google Play icon

‘Persistent Photoconductivity’ Offers New Tool for Bioelectronics

Share
Posted May 11, 2017

Researchers at North Carolina State University have developed a new approach for manipulating the behavior of cells on semiconductor materials, using light to alter the conductivity of the material itself.

Changes in photocurrent before and after exposure to UV light. Persistent photoconductivity is demonstrated even hours after the UV light has been turned off. This is illustrated by the pictograms showing charge carriers that come into contact with cells at the interface during in vitro experiments.

“There’s a great deal of interest in being able to control cell behavior in relation to semiconductors – that’s the underlying idea behind bioelectronics,” says Albena Ivanisevic, a professor of materials science and engineering at NC State and corresponding author of a paper on the work. “Our work here effectively adds another tool to the toolbox for the development of new bioelectronic devices.”

The new approach makes use of a phenomenon called persistent photoconductivity. Materials that exhibit persistent photoconductivity become much more conductive when you shine a light on them. When the light is removed, it takes the material a long time to return to its original conductivity.

When conductivity is elevated, the charge at the surface of the material increases. And that increased surface charge can be used to direct cells to adhere to the surface.

“This is only one way to control the adhesion of cells to the surface of a material,” Ivanisevic says. “But it can be used in conjunction with others, such as engineering the roughness of the material’s surface or chemically modifying the material.”

For this study, the researchers demonstrated that all three characteristics can be used together, working with a gallium nitride substrate and PC12 cells – a line of model cells used widely in bioelectronics testing.

The researchers tested two groups of gallium nitride substrates that were identical, except that one group was exposed to UV light – triggering its persistent photoconductivity properties – while the second group was not.

“There was a clear, quantitative difference between the two groups – more cells adhered to the materials that had been exposed to light,” Ivanisevic says.

“This is a proof-of-concept paper,” Ivanisevic says. “We now need to explore how to engineer the topography and thickness of the semiconductor material in order to influence the persistent photoconductivity and roughness of the material. Ultimately, we want to provide better control of cell adhesion and behavior.”

The paper, “Persistent Photoconductivity, Nanoscale Topography and Chemical Functionalization Can Collectively Influence the Behavior of PC12 Cells on Wide Band Gap Semiconductor Surfaces,” is published in the journal Small. Lead author of the paper is Patrick Snyder, a Ph.D. student in Ivanisevic’s lab. The paper was co-authored by Ronny Kirste of Adroit Materials, and Ramon Collazo, an assistant professor of materials science and engineering at NC State.

Source: NSFNorth Carolina State University

Featured news from related categories:

Technology Org App
Google Play icon
83,396 science & technology articles

Most Popular Articles

  1. Bright Fireball Explodes Over Ontario, Meteorite Fragments Might Have Reached the Ground (August 5, 2019)
  2. Why older people smell the way they do? Japanese have even a special word for it (August 4, 2019)
  3. Moisturizers May Be Turning Your Skin Into ‘Swiss Cheese’ (5 days old)
  4. Terraforming the Surface of Mars with Silica Aerogel? (July 23, 2019)
  5. Swarm Autonomy Tested in Second Major DARPA OFFSET Field Experiment (August 8, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email