Google Play icon

New Probe Could Improve Sonic Boom Investigation

Share
Posted March 12, 2016

afrc2016-0072-01

An air data probe intended to improve investigation of sonic booms is flying on the F-15B aircraft at NASA’s Armstrong Flight Research Center in California.

NASA’s goal for sonic boom research is to find ways to control and lessen the noise from shockwaves so that federal regulators will allow commercial supersonic flight overland.

The current six-flight series is set to continue through about mid March, said Brett Pauer, F-15B project manager. Much like earlier flight tests in 2011 and 2014, the Eagle Aero Probe is flying on the F-15B’s test fixture called the centerline instrument pylon. The pylon is located under the aircraft’s fuselage.

An air data probe intended to improve investigation of sonic booms is flying on the F-15B aircraft at NASA's Armstrong Flight Research Center in California. NASA's goal for sonic boom research is to find ways to control and lessen the noise from shockwaves so that federal regulators will allow commercial supersonic flight overland. The current six-flight series is set to continue through about mid March, said Brett Pauer, F-15B project manager. Much like earlier flight tests in 2011 and 2014, the Eagle Aero Probe is flying on the F-15B's test fixture called the centerline instrument pylon. The pylon is located under the aircraft's fuselage.

A new supersonic probe seen affixed to a F-15B flight test fixture might one day measure the sonic booms of a new generation of supersonic aircraft. Credits: NASA Photo / Lauren Hughes

Researchers will be evaluating the performance of the probe originally developed by Eagle Aeronautics of Hampton, Virginia, and redesigned by NASA for this phase. The probe will be tested in a flight environment and the results will be compared with a traditional NACA-style probe that was flown on the centerline instrumented pylon in 2012. In addition to obtaining air data measurements underneath the F-15B, the probe will measure the strength of a shockwave generated from, as of yet, an undetermined part of the F-15B aircraft structure.

“You want to have minimal lag in your measurement system in order to accurately characterize the intensity of the shockwave,” said Mike Frederick, NASA Armstrong principal investigator of the Eagle Aero Probe. “With this probe, pressure changes are seen almost immediately because the pressure sensors are located within about four inches of the pressure ports on the nosecone. For comparison, on the F-15B nose boom, which has been used for air-to-air probing in the past, the pressure transducers are located back in the radome, approximately 15 feet behind the pressure ports.”

From left, Mike Frederick and NASA interns Jack Ly and Kassidy McLaughlin monitor a flight. Credits: NASA Photo / Lauren Hughes

From left, Mike Frederick and NASA interns Jack Ly and Kassidy McLaughlin monitor a flight.
Credits: NASA Photo / Lauren Hughes

A later phase of the testing will be to install the probe on either the nose of the F-15B, or on one of NASA’s F-15D aircraft based at Armstrong, Pauer said. The Eagle Aero Probe will replace the current nose boom during shockwave probing research flights, he added.

The later flights will look at shockwaves generated by another nearby supersonic aircraft and are expected to obtain more accurate data than traditional probes, Pauer explained.”If the flights go as planned, the Eagle Aero Probes could be used to measure the shockwaves generated by future supersonic aircraft,” Pauer said. “This data could help improve aircraft design tools that would ultimately reduce the loudness of sonic booms.”

Previous generations of the Eagle Aero Probes flew on the F-15B as part of a continuing effort that began as a NASA Research Announcement effort in 2009. The probes were tested in the Unitary Plan Wind Tunnel at NASA’s Langley Research Center in Hampton prior to flight research at NASA Armstrong.

 "If the flights go as planned, the Eagle Aero Probes could be used to measure the shockwaves generated by future supersonic aircraft," Pauer said. "This data could help improve aircraft design tools that would ultimately reduce the loudness of sonic booms." Previous generations of the Eagle Aero Probes flew on the F-15B as part of a continuing effort that began as a NASA Research Announcement effort in 2009. The probes were tested in the Unitary Plan Wind Tunnel at NASA's Langley Research Center in Hampton prior to flight research at NASA Armstrong. From the data obtained during this current flight phase, a key deficiency with the previous generations of the probe appears to be solved, Frederick said. A heater control system added into the probe keeps the pressure transducer temperatures stable at 150 degrees F, minimizing temperature effects on the pressure transducers and resulting in more accurate pressure measurements. Jay Levine, X-Press editor NASA Armstrong Flight Research Center Last Updated: March 9, 2016 Editor: Monroe Conner

Research on the Eagle Aero Probe is ongoing from an F-15B flight test fixture, as the aircraft flies missions over the high desert. Credits: NASA Photo / Jim Ross

From the data obtained during this current flight phase, a key deficiency with the previous generations of the probe appears to be solved, Frederick said. A heater control system added into the probe keeps the pressure transducer temperatures stable at 150 degrees F, minimizing temperature effects on the pressure transducers and resulting in more accurate pressure measurements.

Source: NASA

Featured news from related categories:

Technology Org App
Google Play icon
84,755 science & technology articles

Most Popular Articles

  1. Real Artificial Gravity for SpaceX Starship (September 17, 2019)
  2. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  3. How social media altered the good parenting ideal (September 4, 2019)
  4. What's the difference between offensive and defensive hand grenades? (September 26, 2019)
  5. Just How Feasible is a Warp Drive? (September 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email