Google Play icon

Pioneering effort to detect Ebola

Share
Posted December 9, 2015

Novel process uses a plant virus and may ultimately make Ebola testing more accurate.

According to the World Health Organization, the Ebola outbreak that started in West Africa in 2014 has sickened nearly 30,000 people, killing about one third of them. Detection of the Ebola virus is currently the only way to keep the disease from spreading.

NSF-funded small business Nexgen Arrays is developing tests for the detection of viruses, including Ebola, Lassa, and Marburg, directly from blood, near the site of patient care. These tests are based on technology designed to rapidly detect a broad array of pathogens in a simple, easy-to-use test format. The technology grew out of the Smart Lighting Engineering Research Center at Rensselaer Polytechnic Institute. The center develops new applications for health, productivity and energy savings. Image credit: National Science Foundation

NSF-funded small business Nexgen Arrays is developing tests for the detection of viruses, including Ebola, Lassa, and Marburg, directly from blood, near the site of patient care. These tests are based on technology designed to rapidly detect a broad array of pathogens in a simple, easy-to-use test format. The technology grew out of the Smart Lighting Engineering Research Center at Rensselaer Polytechnic Institute. The center develops new applications for health, productivity and energy savings. Image credit: National Science Foundation

In the past, Ebola diagnostic tests, or assays, have been considered reliable only up to a point. The Ebola virus doesn’t use DNA to store its genetic code. It uses a chemical cousin, called RNA, and extracted RNA degrades easily; one little mistake at the start of a test can ruin the whole thing.

With support from a National Science Foundation (NSF) Rapid Response Research grant, biomedical engineer Nicole Steinmetz has teamed up with breast cancer researcher Ruth Keri to pioneer a novel process that could ultimately make detection of Ebola much more accurate.

While neither of the Case Western Reserve University researchers has worked with Ebola before, both are experts at developing diagnostic tests for diseases. In this case, they are using the tobacco mosaic virus (TMV) to make what’s called a “positive control” for Ebola tests. The goal is to reduce the number of “false negative” results. The researchers are also working to make a simple diagnostic test for use in the field.

“Nanomanufacturing research generates a range of ‘platform’ nanoscale manufacturing technologies, and in this case, biological species such as virus, DNA and proteins are used as platforms to fabricate novel nanoscale materials and structures, and to integrate them into nano-enabled devices and systems, such as Ebola diagnostics,” explains Khershed Cooper, program director for nanomanufacturing and scalable nanomanufacturing in the NSF Engineering Directorate’s Division of Civil, Mechanical and Manufacturing Innovation. “We call it bio-inspired nanomanufacturing. Professor Steinmetz’s research falls under this paradigm–her ‘bioengineered virus’ is an outcome of bio-inspired nanomanufacturing.”

Source: NSF

Featured news from related categories:

Technology Org App
Google Play icon
87,551 science & technology articles

Most Popular Articles

  1. An 18 carat gold nugget made of plastic (January 13, 2020)
  2. Anti Solar Cells: A Photovoltaic Cell That Works at Night (February 3, 2020)
  3. Toyota Raize is a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  4. Nuclear waste could be recycled for diamond battery power (January 21, 2020)
  5. Physicist Proposes a Testable Theory Stating that Information has Mass and could Account for Universe s Dark Matter (January 24, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email