Google Play icon

Disease free water, a global health challenge, commands an international team effort

Posted October 19, 2015

Antibiotic resistance is a growing global public health threat causing an estimated 23,000 deaths in America each year.

One historically overlooked avenue by which antibiotic resistance can spread is through contact or consumption of contaminated water. For example, recent news articles have raised questions about human sewage tainted water at some of the venues for the 2016 Rio de Janeiro Olympics and the potential spread of resistant ‘super-bugs’. Unfortunately, the Brazilian Olympics is just one example of the growing scale of this problem.

The situation is “a global health challenge,” said Peter Vikesland, professor of civil and environmental engineering at Virginia Tech.

Within the U.S. alone, antibiotic resistance is reportedly responsible for $20 billion in excess health care costs, $35 billion in societal costs, and over eight million extra days in the hospital. At the global scale the costs of resistance are difficult to quantify, but may be an order of magnitude larger.

Vikesland, an expert in the optimization of drinking water disinfection practices, is the principal investigator for a new five-year $3.6 million Partnerships in International Research and Education (PIRE) grant from the National Science Foundation (NSF) that is aimed at mitigating this global threat.

The continually climbing global population “requires expanded water reuse, which tightens linkages between wastewater and drinking water,” Vikesland said. At least 43 countries reuse treated wastewater for the irrigation of parks, golf courses, crops, and other purposes. In some countries, including parts of the United States, treated wastewater is increasingly looked at as a potential drinking water source.

The challenge is that wastewater treatment plants are rich in ingredients that are not desirable in drinking water. In particular, communities of microbes — some beneficial and others less so — thrive in wastewater treatment plants.

“Wastewater effluent and sludge discharges are often enriched in antimicrobial drugs, antimicrobial resistance elements, and resistant organisms, and these constituents can contaminate receiving environments,” Vikesland explained.

The scenario for antibiotic entry into the water system is disarmingly easy.

When an antibiotic is consumed, researchers have learned that up to 90 percent passes through someone without being metabolized. Consequently, drugs can leave the body almost intact through normal bodily functions. Both humans and animals excrete both the drugs and the bacteria resistant to the drugs, allowing these pollutants to enter wastewater treatment plants or as agricultural runoff into bodies of water such as streams and rivers.

The NSF PIRE project that Vikesland and his international colleagues are undertaking seeks to halt wastewater derived antimicrobial resistance dissemination. They recognized that societal use of antimicrobial drugs and wastewater treatment processes collectively affect the fluctuations of pharmaceuticals, antimicrobial resistant organisms, and antimicrobial resistance elements. These patterns will vary across the world. They want to globally understand these scenarios.

Additionally, they propose to determine how receiving environment characteristics and wastewater treatment practices synergistically affect resistance dissemination, and then develop and test some novel approaches as to how to stop antimicrobial resistance dissemination.

There is “an urgent need to tackle this international grand challenge in multicultural settings,” Vikesland added. “Antimicrobial resistance is a worldwide public health crisis … and is one of the greatest threats to human health of our time.”

Through the NSF PIRE award, both graduate and undergraduate students will have the opportunity to address this global challenge by traveling to 16 globally distributed wastewater treatment plants. At these plants, the project team will interact with and learn from an internationally recognized team of scholars that was put together to address this issue. All of the Virginia Tech graduate students involved in the effort will participate in the Interdisciplinary Graduate Education Program (IGEP) and will earn certificates in International Research Abroad.

Source: VirginiaTech

Featured news from related categories:

Technology Org App
Google Play icon
87,514 science & technology articles

Most Popular Articles

  1. An 18 carat gold nugget made of plastic (January 13, 2020)
  2. Anti Solar Cells: A Photovoltaic Cell That Works at Night (February 3, 2020)
  3. Toyota Raize is a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  4. Nuclear waste could be recycled for diamond battery power (January 21, 2020)
  5. Physicist Proposes a Testable Theory Stating that Information has Mass and could Account for Universe s Dark Matter (January 24, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email