Google Play icon

NASA’s RaD-X Will Measure Radiation Levels Where Aircraft Fly

Share
Posted September 10, 2015

radxhardware

 

Earth’s atmosphere and magnetic field provide protection from harmful space radiation caused by flares from the sun and cosmic rays from outside our solar system. Space radiation is different from most kinds of radiation we experience here on Earth, such as UV rays, but is still a concern at higher altitudes and near Earth’s poles. Particles that make up space radiation can cause adverse effects to the human body, such as DNA damage inside the cells that can possibly lead to genetic disorders, cancer, heart and gastrointestinal problems, cataracts and brain and nerve dysfunction.

NASA’s high-altitude balloon project, known as NASA’s Radiation Dosimetry Experiment, or RaD-X, will provide first-time indications of how cosmic rays deposit energy in the upper atmosphere. RaD-X is a microsatellite structure that will launch from New Mexico during a launch window that opens Sept. 10 (visit this site for updates on the launch time) and fly on a scientific research balloon for 24 hours to measure cosmic ray energy at two separate altitude regions in the stratosphere — above 110,000 feet and between 69,000 to 88,500 feet.  The flight will validate low-cost sensors for future missions and will provide data that may improve the health and safety of future commercial and military aircrews and space crews.

NASA's RaD-X team poses for a photo. Credits: NASA

NASA’s RaD-X team poses for a photo.
Credits: NASA

Low-cost, Low-risk, Big-return

Small satellite missions, like RaD-X, provide NASA with valuable opportunities to test emerging technologies and economical commercial off-the-shelf components, which may be useful in future space missions.

These ground- and balloon-based measurements complement NASA’s fleet of space satellites, and place useful tools, like NASA’s Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, at our fingertips. RaD-X will improve NAIRAS, a NASA-funded Applied Sciences Program to develop an operational prototype for a global, real-time, data-driven predictive system needed to assess biologically harmful radiation exposure levels for aviation. NAIRAS could be used by public and private entities for informed decision-making about radiation exposure safety for flight crews, the general public, and commercial space operations.

“Before NAIRAS can transition to operations, it must be verified and validated,” said Chris Mertens, RaD-X principal investigator. “RaD-X is an important next step in the verification and validation process, collecting and processing data from the top of the atmosphere that will constrain the model.”

RaD-X will also host the first Cubes in Space (CiS) flight opportunity. CiS is a global STEAM-based education program for students (ages 11-18) that provides a no-cost opportunity to design and compete to launch an experiment into space. The small cubes are placed on sounding rockets and scientific balloons in cooperation with NASA’s Wallops Flight Facility and the Earth Systems Science Pathfinder Program Office.  RaD-X, one of two CiS opportunities, will carry more than 100 small cubes filled with experiments created by students around the U.S.

In 2013, RaD-X was chosen as a part of NASA’s Hands-On Project Experience (HOPE) project, a cooperative workforce development program sponsored by the Science Mission Directorate and the Office of the Chief Engineer’s Academy of Program/Project and Leadership (APPEL). The HOPE Training Program provides an opportunity for a team of early-career and career transitional NASA employees to propose, design, develop, build, and launch a suborbital flight project over the course of 18 months. The purpose of the program is to enable practitioners in the early years of their careers to gain the knowledge and skills necessary to manage NASA’s future flight projects.

The RaD-X microsatellite structure was developed at NASA’s Langley Research Center. Credits: NASA

The RaD-X microsatellite structure was developed at NASA’s Langley Research Center.
Credits: NASA

“The RaD-X team carefully evaluated each phase of the operation from integration and launch, to recovery and data processing,” said Kevin Daugherty, RaD-X project manager. “It was great to receive this type of experience through the HOPE project, and we have all grown from the opportunity.”

RaD-X contributes to NASA’s Heliophysics Division Living With A Star (LWS) Program’s goal to understand those aspects of the connected sun-Earth system that affect life and society by improving prediction of biologically harmful radiation exposure to air travelers and by enhancing the understanding of cosmic ray transport processes and interactions with the atmosphere.

The RaD-X microsatellite structure was developed at NASA’s Langley Research Center, where the project is managed. RaD-X has partnered with NASA’s Ames Research Center for expertise on radiation detectors, and NASA’s Wallops Flight Facility for expertise with high-altitude balloons.

Source: NASA

Featured news from related categories:

Technology Org App
Google Play icon
85,440 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  4. The World's Energy Storage Powerhouse (November 1, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email