Google Play icon

‘Yellow chemistry’ turns sulfur waste into plastics

Share
Posted August 18, 2015

While many scientists are hard at work on “green chemistry” projects that will benefit the environment, there are a handful of researchers at the University of Arizona who are starting a trend of their own–“yellow chemistry.” That’s because their main ingredient is sulfur, a yellow waste product from petroleum refining and natural gas production.

As people grow more concerned about throwaways destined for landfills (or worse, for the open ocean) and the problems associated with fossil fuels, businesses of all sizes are looking beyond "traditional," petroleum-based plastics to alternatives derived from plants, or even synthesized by microorganisms. Bioplastics are made wholly or in part from renewable biomass sources such as sugarcane and corn, or from the digest of microbes such as yeast. Some bioplastics are biodegradable or even compostable, under the right conditions. New, more eco-friendly plastics are cropping up in all sorts of places, from tea bags to 3-D printing media to medical implants. Find out more in this discovery. Image credit: National Science Foundation

As people grow more concerned about throwaways destined for landfills (or worse, for the open ocean) and the problems associated with fossil fuels, businesses of all sizes are looking beyond “traditional,” petroleum-based plastics to alternatives derived from plants, or even synthesized by microorganisms. Bioplastics are made wholly or in part from renewable biomass sources such as sugarcane and corn, or from the digest of microbes such as yeast. Some bioplastics are biodegradable or even compostable, under the right conditions. New, more eco-friendly plastics are cropping up in all sorts of places, from tea bags to 3-D printing media to medical implants. Find out more in this discovery. Image credit: National Science Foundation

With support from the National Science Foundation (NSF), chemists Jeff Pyun and Richard Glass and a team of collaborators have mixed up a chemical recipe for sulfur-based plastic, and they’ve already used it to make everything from toys and lenses to a 45 record. But, ultimately, they’re thinking of much bigger applications with this new class of plastics.

Pyun says the annual production of sulfur is approximately 70 million tons per year, the majority of which comes from oil and gas production. While much of that is used up making sulfuric acid and fertilizer, there are still millions of tons left over.

He envisions using sulfur waste to make lighter, cheaper electric car batteries capable of holding four to five times the charge we’ve come to expect. Because of its high refractive index and excellent mid-infrared transparency, sulfur also holds potential for optical applications, such as night vision devices, thermal monitoring sensors and medical imaging hardware.


Source: NSF

Featured news from related categories:

Technology Org App
Google Play icon
85,413 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  4. The World's Energy Storage Powerhouse (November 1, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email