Google Play icon

New moth may curb pests, delay Bt crop resistance

Posted July 17, 2015

Diamondback moths are notorious pests of crucifer crops, including canola and such vegetables as cabbages, broccoli and mustards, costing farmers worldwide some $5 billion each year. They also have developed resistance to many insecticides, including Bt (Bacillus thuringiensis), a soil bacteria that can be sprayed on plants and also has been genetically engineered into corn and cotton to prevent insect attack.

Courtesy of Shelton Lab A diamondback moth larva feeds on a leaf.

Courtesy of Shelton Lab
A diamondback moth larva feeds on a leaf.

A new study published in the issue of BMC Biology describes greenhouse trials of a genetically engineered (GE) diamondback moth that not only suppresses populations of pest diamondback moths (Plutella xylostella), but also reduces their resistance to Bt. Traditional insecticides and Bt crops kill pest insects, but steady exposure may lead to insects developing resistance to them.

The researchers used the diamondback moth and Bt broccoli as a model system to study a new approach to integrated pest management. Though Bt broccoli is not commercially available, and there are no Bt crops on the market that diamondback moth larvae feed on, the study’s findings could apply to commercial Bt corn and Bt cotton to delay or prevent the evolution of resistance in pests that feed on those crops.

“We are at a crossroads right now with how we control pests, reduce pesticides and provide food for a growing world population in a changing climate,” said Anthony Shelton, professor of entomology at Cornell’s New York State Agricultural Experiment Station (NYSAES) in Geneva, New York, and co-author of the paper. “We need to put our heads together to solve these problems with new solutions.”

One possible solution is a genetically engineered moth developed by the United Kingdom’s Oxitec Ltd. The male moth carries a gene that prevents females from effectively reproducing. The paper describes greenhouse trials where high numbers of GE male moths were released into cages containing pest diamondback moths. Shelton and colleagues found that in just a few generations, the engineered moths mating with the pest females led to a rapid decline of the pests.

In additional experiments, the researchers released low levels of the GE male moths in cages with Bt broccoli and pest moths. They discovered that the GE males kept pest populations in check and also delayed the buildup of resistance to the Bt broccoli.

“Adding the two biotechnologies together – engineered insects and Bt plants – demonstrates that you could both suppress the pest population and also decrease the number of Bt-resistant individuals in the population. The way forward in farming is responsible integrated pest management to improve available methods and to introduce new methods for safe and sustainable insect pest control,” Shelton said.

Source: Cornell University

Featured news from related categories:

Technology Org App
Google Play icon
84,804 science & technology articles

Most Popular Articles

  1. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (Yesterday)
  2. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  3. How social media altered the good parenting ideal (September 4, 2019)
  4. What's the difference between offensive and defensive hand grenades? (September 26, 2019)
  5. Just How Feasible is a Warp Drive? (September 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email