Google Play icon

Mesenchymal stromal cells potential in enhancing diabetic wound healing

Posted May 27, 2015
This news or article is intended for readers with certain scientific or professional knowledge in the field.

In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing.


Little is published on the characterization and therapeutic potential of human mesenchymal cells derived from hair follicle (HF) dermal sheath (DS). In this study, we isolated and characterized HF DS-mesenchymal stromal cells (DS-MSCs) with respect to the bone marrow mesenchymal stromal cells (BM-MSCs). We further tested if DS-MSC-conditioned medium (CM), like what was previously reported for BM-MSC CM, has superior wound-healing properties, in both in vitro and in vivo wound models compared with skin fibroblast CM.


DS-MSCs were isolated from HF and cultured in vitro to assess long-term growth potential, colony-forming efficiency (CFE), expression of CD surface markers and differentiation potential. The cytokine expression of DS-MSC CM was determined through an antibody-based protein array analysis. The wound-healing effects of the CM were tested in vitro with the use of human cell cultures and in vivo with the use of a diabetic mouse wound model.


In vitro results revealed that DS-MSCs have high growth capacity and CFE while displaying some phenotypes similar to BM-MSCs. DS-MSCs strongly expressed many surface markers expressed in BM-MSCs and could also differentiate into osteoblasts, chondrocytes and adipocytes. DS-MSCs secreted significantly higher proportions of paracrine factors such as interleukin-6 (IL-6), IL-8 and growth-related oncogene. DS-MSC-CM demonstrated enhanced wound-healing effects on human skin keratinocytes, fibroblasts and endothelial cells in vitro, and the wound-healing time in diabetic mice was found to be shorter, compared with vehicle controls.


Human HF DS stromal cells demonstrated MSC-like properties and might be an alternative source for therapeutic use in wound healing.

Source: PubMed

Featured news from related categories:

Technology Org App
Google Play icon
85,465 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  4. Plastic waste may be headed for the microwave (October 18, 2019)
  5. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email