Google Play icon

Hunt for new gravity-like interactions

Share
Posted May 21, 2015
This news or article is intended for readers with certain scientific or professional knowledge in the field.

University of Tokyo researchers have measured the gravity-like force in the nanometer range by precisely measuring the scattering of neutrons off Xenon atoms. The group confirmed that the expected distribution based on known interactions and the distribution determined in the current experiment were extremely accurately matched, further limiting the possible range in which a gravity-like force may exist.

Schematic of neutron scattering off a xenon atom due to Yukawa-type scattering potential caused by the new particle. Image credit: University of Tokyo

Schematic of neutron scattering off a xenon atom due to Yukawa-type scattering potential caused by the new particle. Image credit: University of Tokyo

As two objects get closer, the gravitational attraction that acts between them increases in inverse proportion to the square of the distance separating them. For example, if the distance between two objects is reduced by half, the gravitational force acting between them increases four times. However, it has not been experimentally verified if this relation holds even in the microscopic world of atoms and electrons below separations of say 100 microns.

Assistant Professor Yoshio Kamiya of the International Center for Elementary Particle Physics and colleagues, using the small angle scattering neutron beamline at the HANARO research reactor at the Korea Atomic Energy Research Institute, highly accurately measured the scattering angle of a cooled beam of neutrons irradiating xenon atoms. The research group achieved the highest ever search sensitivity for object separations in the range of 0.04 to 4 nanometers.

This research into gravity-like interactions at nanometer separations may offer clues to understanding the structure of spacetime and gravity. Verification experiments for gravity-like interactions are usually said to be challenging due to high background from stronger nuclear and electromagnetic interactions. This research has demonstrated one possible scheme to investigate such gravity-like interactions.

Source: University of Tokyo

Featured news from related categories:

Technology Org App
Google Play icon
84,692 science & technology articles

Most Popular Articles

  1. Oumuamua 2.0? It Looks Like There is a New Interstellar Object Passing Through the Solar System (September 13, 2019)
  2. Real Artificial Gravity for SpaceX Starship (September 17, 2019)
  3. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  4. How social media altered the good parenting ideal (September 4, 2019)
  5. What's the difference between offensive and defensive hand grenades? (September 26, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email