Google Play icon

‘Gigashot’ laser installed for European project

Share
Posted March 16, 2015

A key component of the High-Repetition-Rate Advanced Petawatt Laser System (HAPLS) under construction at LLNL has been installed and commissioned. The new Gigashot-HE diode-pumped solid-state (DPSS) laser system will be used as a pump source for one of HAPLS’ high-energy titanium-doped sapphire (Ti:Sapphire) amplifier stages.

LLNL’s Thomas Spinka (left) and Andy Bayramian and Donald Paddick of Northrop Grumman Cutting Edge Optronics install the Gigashot-HE laser in the HAPLS laser system under construction at Lawrence Livermore National Laboratory.

LLNL’s Thomas Spinka (left) and Andy Bayramian and Donald Paddick of Northrop Grumman Cutting Edge Optronics install the Gigashot-HE laser in the HAPLS laser system under construction at Lawrence Livermore National Laboratory.

When commissioned to its full design performance, the HAPLS laser system will be the world’s highest-average-power petawatt (quadrillion-watt) laser system. It will be installed in the European Union’s Extreme Light Infrastructure (ELI) Beamlines high-intensity laser science facility now under construction in the Czech Republic.

HAPLS is designed to generate 30-joule pulses with 30 femtoseconds (quadrillionths of a second) pulse duration each, delivering a peak power of one petawatt at a repetition rate of 10 pulses per second (10 Hz). This very high repetition rate is a major advancement over current petawatt system technologies, which can fire a maximum of once a second.

Supplied by Northrop Grumman Cutting Edge Optronics (CEO), the injection-seeded, diode-pumped Gigashot-HE laser delivers two joules of 532-nanometer (green) laser energy per pulse at a repetition rate of 10 Hz, with each pulse lasting less than 10 billionths of a second.

“The Gigashot-HE pumps the alpha amplifier in the HAPLS short-pulse beamline, which is an intermediary, joule-class Ti:Sapphire amplifier, before injecting into the final, gas-cooled power amplifier,” said LLNL’s Constantin Haefner, the HAPLS program director. “HAPLS relies on a fully diode-pumped beamline to enable petawatt pulses with 10 Hz repetition rate that ensures robustness, low maintenance and high pulse-to-pulse stability.”

The Gigashot-HE consists of four PowerPULSE laser modules; one oscillator, one preamplifier and two power amplifiers, utilizing radially side-pumpedneodymium-doped yttrium aluminium garnet, or Nd:YAG, rods ranging in diameter from three to 18 millimeters. Each PowerPULSE laser module is pulse-pumped by CEO’s laser diode arrays; the arrays have an expected lifetime of more than 10 billion shots, or more than 30 years of continuous operation at 10 Hz.

The pan-European ELI project is being designed to significantly advance the state of the art for high-power lasers, enabling international scientific research in such areas as medical imaging, particle acceleration, biophysics, chemistry and quantum physics. Generation of high-brightness X rays and acceleration of charged particles are among the uses of its ultrashort, high energy pulses.

Source: LLNL

Featured news from related categories:

Technology Org App
Google Play icon
86,843 science & technology articles