Google Play icon

How NASA Watches CMEs

Share
Posted September 26, 2014

Those who study Earth’s weather have a luxury of data points to study. From thousands of weather stations measuring temperature and rainfall to satellites tracking storm fronts up in space, meteorologists can watch detailed maps of the weather as it sweeps across land or sea.

Via coronal mass ejections the star loses a fraction of its mass; additionally, CME generates a strong magnetic field that interacts with the star. In this image: CME on 31 August 2012. Credit: NASA

Via coronal mass ejections the star loses a fraction of its mass; additionally, CME generates a strong magnetic field that interacts with the star. In this image: CME on 31 August 2012. Credit: NASA

Compared to this, the study of space weather – including CMEs – is a much younger science, with far fewer observatories available. However, our resources have grown dramatically in the last decade: NASA currently flies 18 missions to study the sun’s effects at Earth and on the entire solar system, a field known as heliophysics, and additionally launches numerous short-flight rockets for observations of solar impacts in and above Earth’s atmosphere. Coupled with improved computer modeling, keeping an eye on – and getting a better understanding of – CMEs has taken a giant leap forward in the 21st century.

Space weather models combined with real time observations help scientists track CMEs. These images were produced from a model known as ENLIL named after the Sumerian storm god. It shows the journey of a CME on March 5, 2013, as it moved toward Mars. Image Credit: NASA/Goddard/SWRC/CCMC

“Over the past ten years, we have had a major breakthrough in understanding space weather,” said Antti Pulkkinen a space weather scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We can now track the basic properties of CMEs. When our solar observatories see a CME, we can tell what direction it’s going in and how fast it’s traveling.”

Improved observations combined with improved models has led to hybrid descriptions of a CME, relying partially on computer simulations and partially on actual observations. NASA houses a collection of space weather models available for public access at the Community Coordinated Modeling Center at Goddard. Together with observations they can provide a holistic picture of any given CME.

By gathering data from numerous observatories, scientists can create models and explore what-if scenarios about what would happen near Earth due to a given CME. Watch the video to learn more about what scientists can see in these models. Image Credit: NASA/Bridgman/Duberstein

For example, NASA’s Solar and Terrestrial Relations Observatory, or STEREO, might see a CME erupt on the sun. When that imagery is combined with observations from the European Space Agency and NASA’s Solar and Heliospheric Observatory, or SOHO, scientists can create a 3-dimensional picture of the giant cloud. Scientists then input this data into a model and then track how the CME unfolded and spread through space until it passed by NASA observatories closer to Earth. These observatories can directly measure the magnetic fields and speed of the CME as it passes by, as well as see how it affected Earth’s own magnetic fields – the magnetosphere.

A March 5, 2013, CME as seen by the Solar and Heliospheric Observatory. Combining the information gleaned from such imagery with state-of-the-art models helps scientists better understand how CMEs move toward, and affect, Earth. Image Credit: ESA/NASA/SOHO/Jhelioviewer

A March 5, 2013, CME as seen by the Solar and Heliospheric Observatory. Combining the information gleaned from such imagery with state-of-the-art models helps scientists better understand how CMEs move toward, and affect, Earth. Image Credit: ESA/NASA/SOHO/Jhelioviewer

Such information on the CME’s entire path opens the door to understanding why any given characteristic of the CME near the sun might lead to a given effect near Earth. Each additional piece of the puzzle helps us better understand just what causes these giant eruptions — and whether or not any particular CME could pose a hazard to astronauts as well as technology in space and on the ground.

Source: NASA

Featured news from related categories:

Technology Org App
Google Play icon
84,767 science & technology articles

Most Popular Articles

  1. Real Artificial Gravity for SpaceX Starship (September 17, 2019)
  2. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  3. How social media altered the good parenting ideal (September 4, 2019)
  4. What's the difference between offensive and defensive hand grenades? (September 26, 2019)
  5. Just How Feasible is a Warp Drive? (September 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email