Google Play icon

Bioengineers invent a way to speed up drug discovery

Posted June 20, 2014

Of the millions of proteins, 500 in the kinase family are particularly important to drug discovery. Kinases are messengers: They deliver signals that regulate and orchestrate the actions of other proteins. Proper kinase activity maintains health. Irregular activity is linked to cancer and other diseases. For this reason many drugs seek either to boost or suppress kinase activity.

Now Stanford bioengineers have invented a way to observe and report on the behavior of these signaling proteins as they go about their crucial work inside living cells.

“We’ve been able to observe multiple kinases functioning in living cells, which is something no one else has ever seen,” saidMarkus Covert, an assistant professor of bioengineering at Stanford and lead author of a paper published today in the journalCell.

“Cancers can occur when a kinase inappropriately tells a cell to ‘grow, grow, grow’,” Covert noted. “The reverse can also be true, if a cell reaches what should be the end of its normal life-span but the kinase never says ‘die, die, die’.”

Using the new technique, researchers could observe and compare kinase activity in healthy versus diseased cells – then introduce an experimental drug to see how the proposed remedy affects the living cell.

Before this, researchers would have had to pulverize a cell sample, extract the relevant kinase and measure its levels. If they designed a drug to treat the condition, they would have to administer the experimental remedy to a different cell culture, then pulverize this sample and sift out the data on kinase activity.

Stanford Assistant Professor Markus Covert

Assistant Professor Markus Covert led a team of Stanford bioengineers who have invented a way to observe and report on the behavior of kinase proteins as they go about their crucial work inside living cells. (Photo: Steve Fisch)

The new Stanford technique enables researchers to read the activities of multiple kinases in living cells and, if they administer an experimental drug, to observe any changes that result in that same cell sample.

Covert believes that this process will speed development of new drugs aimed at cancers and other conditions linked to kinase irregularities. More than two dozen such drugs are on the market or in development today, from companies including Genentech, Amgen, Novartis, Roche and Takeda.


Sergi Regot, a postdoctoral scholar in Covert’s lab, spent more than a year developing and refining the process that he outlined as the first author of the Cell paper.

It all begins with a conceptual understanding of how kinase messenger proteins transmit signals.

Protein signaling is a complex cascade of physical events inside a cell. The protein itself is a long chain of atoms. Different groups of atoms in the chain perform different functions. Some atoms serve as the antenna or receiver that directs the kinase to a specific location. Upon arriving at its destination, the kinase delivers its message, instructing the protein to do something inside the cell.

So the kinase essentially has two parts: One part finds the address inside the cell, and the other part delivers the message.

The circle inside each cell is its nucleus. As this video begins, the circles are brightwhich reveals the presence of inactive kinase protein decoys. After the Stanford bioengineers stimulated the cells to activate the kinases, the nuclear circles darkened again. Kinase proteins regulate health and help cause disease. So creating a way to track these light and dark areas allows researchers to see whether a kinase is active or inactive when a cell is healthy or diseased. This new technique will speed drug discovery. (Video: Sergi Regot, Covert Lab)

To track the activity of this signaling system in living cells, Regot came up with the idea of creating a fake destination for the kinase. He called this decoy a Kinase Translocation Reporter, or KTR. He tagged the KTRs with a fluorescent protein so he could track their locations inside the cell with special microscopy tools. He added one other crucial element to the KTR: a molecular switch that indicated whether the kinase was active or inactive.

“All of this was easier thought of than accomplished, but in the end we did it,” Regot said.

By tracking the intensity of the fluorescent KTRs the bioengineers could tell whether kinase was active or inactive. The Stanford technique allows researchers to see how specific levels of kinase activity either promote health or trigger disease inside a living cell.

Covert’s team spent more than a year working on the technique. So far the researchers have successfully applied the KTR approach to five kinases, and they believe that KTR technology could be extended to other kinases to make it a widely available and useful tool in drug discovery.

“Imagine you wanted to discover a new drug,” Covert said. “You could throw KTRs into a cell culture and observe kinase activity under different conditions.”

The work was supported in part by the National Institutes of Health and NIH Pioneer Award. The Stanford Office of Technology Licensing has filed a provisional patent application based on the work.

Source: Stanford University, By Tom Abate

Featured news from related categories:

Technology Org App
Google Play icon
85,611 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  4. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  5. ‘Artificial leaf’ successfully produces clean gas (October 22, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email