Google Play icon

Theorists propose globally networked entangled atomic clock

Posted June 17, 2014
Theorists propose globally networked entangled atomic clock
The concept of world-wide quantum clock network. Credit: Nature Physics (2014) doi:10.1038/nphys3000

A small team of physicists from the U.S. and Denmark has published a paper in the journal Nature Physics outlining the idea of a collection of atomic clocks located around the world—all networked via entangled particles. They propose that such a system of clocks would be far more accurate than anything that exists today.

The idea of networking clocks involves two areas of research—atomic clocks and entanglement. Atomic clocks are of course the most accurate time devices available today—they track time by measuring the resonance frequency of atoms—generally caesium. And entanglement is where pairs of particles are linked in ways that are still not fully understood—what happens to one automatically happens to the other, regardless of distance. To make a global networked clock, the researchers propose, would involve setting up a bunch of atomic clocks at various sites around the globe (and one or more in space) and then entangling particles between each of them, one after the other. The result would be a single clock that would be more precise than any of its component clocks. That would be possible, the team notes, because entanglement would allow for reduced measurement noise in all of the clocks.

Read more at:

Featured news from related categories:

Technology Org App
Google Play icon
85,465 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. The World's Energy Storage Powerhouse (November 1, 2019)
  4. Plastic waste may be headed for the microwave (October 18, 2019)
  5. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email