Google Play icon

Sensitive detection method may help impede illicit nuclear trafficking

Share
Posted April 16, 2014
Sensitive detection method may help impede illicit nuclear trafficking
This is a simulated inspection of a layered baggage-like object that contains a thin, shielded plutonium wedge (a), not to scale. A single energy radiograph is shown in (b) along with the material estimations from the adaptive inverse algorithm which show an equivalent of color vision (by material) for a single-view radiograph using spectral X-ray detector data. Credit: M.Deinert/UT Austin
According to the International Atomic Energy Agency (IAEA) the greatest danger to nuclear security comes from terrorists acquiring sufficient quantities of plutonium or highly enriched uranium (HEU) to construct a crude nuclear explosive device. The IAEA also notes that most cases of illicit nuclear trafficking have involved gram-level quantities, which can be challenging to detect with most inspection methods.

 

According to a new study appearing this week in the Journal of Applied Physics, coupling commercially available spectral X-ray detectors with a specialized algorithm can improve the detection of uranium and plutonium in small, layered objects such as baggage. This approach enhances the detection powers of X-ray imaging and may provide a new tool to impede nuclear trafficking.

The study was conducted by a joint research team from the University of Texas at Austin (UT) and the Department of Energy’s Pacific Northwest National Laboratory (PNNL).

“We first had to develop a computational model for how X-rays move through materials and how they are detected so that we could predict what an image will look like once the radiation passed through an object,” said UT’s Mark Deinert, one of the authors on the paper.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
86,845 science & technology articles