Google Play icon

Tectonic stress feedback loop explains U-shaped glacial valleys

Share
Posted March 14, 2014

In the shadow of the Matterhorn, the broad form of the Matter Valley—like so many throughout the Alps—is interrupted by a deep U-shaped glacial trough. Carved into a landscape reflecting millennia of tectonic uplift and river erosion, growing evidence suggests the 100-meter-deep (328-foot-deep) U-shaped groove was produced shortly after a shift toward major cycles of Alpine glaciation almost a million years ago. Subsequent glaciations may have therefore had little effect on the landscape.

The Matter Valley and other Alpine valleys’ U-shaped incisions were carved by glaciers, but the power of ice alone is not enough to explain the location or apparent timing of the troughs’ formation. If glacial forces were the sole driver, the valleys would be three times as wide, and would grow consistently deeper during each period of glaciation.

In previous research, Leith et al. proposed a new mechanism to explain characteristic fracturing in bedrock beneath glaciers, and in the present study, they find that this may have driven a one-off period of amplified glacial erosion in the Matter Valley. In the authors’ model, bedrock stresses left over from mountain formation are focused beneath the surface at the center of V-shaped valleys. Early periods of glacial erosion carved through the upper bedrock layers, exposing the stressed rock.

 

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
87,003 science & technology articles

Most Popular Articles

  1. You Might Not Need a Hybrid Car If This Invention Works (January 11, 2020)
  2. Toyota Raize a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  3. An 18 carat gold nugget made of plastic (January 13, 2020)
  4. Human body temperature has decreased in United States, study finds (January 10, 2020)
  5. Donkeys actually prefer living in hot climate zones (January 6, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email