Google Play icon

Scientists identify ‘molecular fossil’ in fungi

Share
Posted January 20, 2014
Scientists identify ‘molecular fossil’ in fungi
The fungus Yarrowia lipolytica growing in filamentous form in low oxygen conditions. Credit: University College Dublin
All but a few eukaryotes die without oxygen, and they respond dynamically to changes in the level of oxygen available to them. UCD scientists used genetic analysis to pinpoint an evolutionary switch in regulating response to low oxygen levels in fungi.

One example of ancient oxygen-requiring biochemical pathway in eukaryotes is the biosynthesis of sterols, producing cholesterol in animals and ergosterol in fungi.

The mechanism regulating the sterol pathway is widely conserved between animals and fungi and centres on a protein family of transcription activators named the sterol regulatory element binding proteins (SREBPs), which form part of a sterol-sensing complex.

However, in one group of ; the Saccharomycotina, which includes the model yeast Saccharomyces cerevisiae and the major pathogen Candida albicans, control of the sterol pathway has been taken over by an unrelated regulatory protein, Upc2.

New research published in PLoS Genetics by UCD researchers, in collaboration with colleagues from AgroParisTech, France and the University of Kansas, USA, used comparative genomic analysis to  investigate the timing of the evolutionary switch from one regulatory mechanism to another; from SREBPs to Upc2.

Read more at: Phys.org

Featured news from related categories:



Technology Org App
Google Play icon
86,881 science & technology articles

Most Popular Articles

  1. You Might Not Need a Hybrid Car If This Invention Works (January 11, 2020)
  2. Toyota Raize a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  3. An 18 carat gold nugget made of plastic (January 13, 2020)
  4. Human body temperature has decreased in United States, study finds (January 10, 2020)
  5. Often derided as pests, deer and elk can help young Douglas fir trees under some conditions (December 5, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email