Google Play icon

Citrus fruit inspires a new energy-absorbing metal structure

Share
Posted December 4, 2013
Citrus fruit inspires a new energy-absorbing metal structure
It has been said that nature provides us with everything that we need. A new study appearing in Springer’s Journal of Materials Science may lend credence to that claim. Researchers from the Foundry Institute of the RWTH Aachen University in Germany, and Plant Biomechanics Group of the University of Freiburg, Germany, have developed an aluminum hybrid that could be used to optimize technical components and safety materials. And the inspiration came from an unexpected source – the peel of the pomelo fruit (Citrus maxima).

Pomelo fruits have a mass of one to two kilograms, but are able to withstand impact forces resulting from falls of over 10 meters. The fruit’s impact resistance is mainly due to the hierarchical structuring of the peel, which is made up of a graded, fiber-reinforced foam. The new aluminum hybrid is the product of a bio-inspired approach, combining metals with different mechanical properties that reflect these naturally occurring structures and mimic the strength of the pomelo peel.

To make use of the pomelo’s ability to absorb impact energy, the “block mold casting” process was modified, and the pomelo foam’s strut composition was transferred to a metal hybrid. This hybrid consists of highly ductile pure aluminum in the center and a high strength aluminum-silicon alloy in the outer shell.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
84,820 science & technology articles

Most Popular Articles

  1. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (2 days old)
  2. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  3. How social media altered the good parenting ideal (September 4, 2019)
  4. What's the difference between offensive and defensive hand grenades? (September 26, 2019)
  5. Just How Feasible is a Warp Drive? (September 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email