Google Play icon

What composes the human heart? Researchers crunch the numbers

Share
Posted November 21, 2013

A foundational study published in the journal PNAS (Proceedings of the National Academy of Sciences) this week by researchers at the University of Toronto’s Institute of Biomaterials & Biomedical Engineering (IBBME) and the McEwen Centre for Regenerative Medicine have identified the optimal structure and cell ratio associated with heart function – and the discovery has already led the team to another research first: the engineering of the first-ever living, three-dimensional human arrhythmic tissue.

The study marks the first time that researchers have tried to define and formulate the precise type and ratio of cell types that produce highly functional cardiac tissue.

“Hearts are not just composed of one type of cell,” explained fourth-year IBBME PhD Student Nimalan Thavandiran and first author of the PNAS study. But until now, scientists have not known how to mix different cell types in engineered heart tissue in such a way that the tissue achieves the composition and maturity level of the native human heart.

Thavandiran solved this mystery by methodically separating out different cell types derived from human pluripotent stem cells and precisely mixing them back together. Using scoring metrics associated with functional hearts – contraction, electrical activity and cell alignment – Thavandiran was able to develop a formula for engineering highly functional heart tissue.

The composition of the cells is vital,” stated Thavandiran. “We discovered that a mixture of 25% cardiac fibroblasts (skin-like cells) to 75% cardiomyoctes (heart cells) worked best.” The carefully composed cell ratios were then grown in three-dimensional “wires” that mimic the structure of human heart tissue.

“An exciting result of our study is our ability to miniaturize the tissues into human heart micro-tissues that can be used to measure normal and diseased human heart responses to drugs,” emphasized Professor Peter Zandstra, corresponding author of the study and Canada Research Chair in Stem Cell Bioengineering at IBBME and the McEwen Centre for Regenerative Medicine.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
86,058 science & technology articles

Most Popular Articles

  1. NASA Scientists Confirm Water Vapor on Europa (November 19, 2019)
  2. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  3. How Do We Colonize Ceres? (November 21, 2019)
  4. Scientists Reverse Dementia in Mice with Anti Inflammatory Drugs (5 days old)
  5. This Artificial Leaf Turns Atmospheric Carbon Dioxide Into Fuel (November 8, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email