Google Play icon

Virtual toothpick helps technologist ‘bake’ the perfect thin-film confection

Posted November 15, 2013
Virtual toothpick helps technologist 'bake' the perfect thin-film confection
NASA technologist Vivek Dwivedi, who has distinguished himself as the go-to-engineer for atomic layer deposition, has assembled a new reactor at NASA’s Goddard Space Flight Center that he plans to use for thin-film experimentation. He is inserting one of his “virtual toothpick” technologies. Credit: NASA Goddard/Bill Hrybyk
Creating thin films using a rapidly evolving technology that promises to solve some of NASA’s thorniest engineering challenges is a lot like baking a cake. That’s why Vivek Dwivedi, a technologist at NASA’s Goddard Space Flight Center in Greenbelt, Md., has assembled a special “oven” and a “virtual toothpick” to monitor the progress of his confections.

The technology, called atomic layer deposition or ALD, is one of many techniques for applying thin films, which among other applications can improve computer memory, protect materials against corrosion, oxidation, and wear, and perform as batteries when deposited directly onto chips. It involves placing a substrate material inside a reactor chamber, which can be likened to an oven, and sequentially pulsing different types of precursor gases to create an ultra-thin film whose layers are literally no thicker than a single atom.

Although other thin-film deposition techniques exist, ALD offers an advantage over competing approaches. It can deposit films inside pores and cavities, giving ALD the unique ability to coat in and around three-dimensional objects, which is important to NASA scientists who fly complex, three-dimensional instrument components, like baffles. Baffles are devices that help restrain fluid, gas or loose material, or prevent sound or light from spreading in a certain direction.

Read more at:

Featured news from related categories:

Technology Org App
Google Play icon
86,845 science & technology articles