Google Play icon

Sun Emits Third Solar Flare in 2 Days

Share
Posted October 28, 2013

UPDATE: Another solar flare erupted from the same area of the sun on Oct. 25, 2013,which peaked at 11:03 a.m. EDT. This flare is classified as an X2.1 class.

The sun emitted a significant solar flare, peaking at 4:01 a.m. EDT on Oct. 25, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, anywhere from minutes to hours.

This image of a second solar flare on Oct. 25, 2013, was captured by NASA's Solar Dynamics Observatory, or SDO, and shows a blend of light in wavelengths of 193 and 131 Angstroms. The flare, an X2.1, appears as the bright flash on the left. Image Credit: NASA/SDO/GSFC

This image of a second solar flare on Oct. 25, 2013, was captured by NASA’s Solar Dynamics Observatory, or SDO, and shows a blend of light in wavelengths of 193 and 131 Angstroms. The flare, an X2.1, appears as the bright flash on the left. Image Credit: NASA/SDO/GSFC

To see how this event may impact Earth, please visit NOAA’s Space Weather Prediction Center at https://spaceweather.gov, the U.S. government’s official source for space weather forecasts, alerts, watches and warnings.

This flare is classified as an X1.7 class flare. “X-class” denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. In the past, X-class flares of this intensity have caused degradation or blackouts of radio communications for about an hour.

NASA's Solar Dynamics Observatory captured this image of an X1.7 class flare on Oct. 25, 2013. The image shows light in the 131-angstrom wavelength, which is good for seeing material at the intense temperatures of a solar flare, and which is typically colorized in teal. Image Credit: NASA/SDO

NASA’s Solar Dynamics Observatory captured this image of an X1.7 class flare on Oct. 25, 2013. The image shows light in the 131-angstrom wavelength, which is good for seeing material at the intense temperatures of a solar flare, and which is typically colorized in teal. Image Credit: NASA/SDO

Increased numbers of flares are quite common at the moment, since the sun’s normal 11-year activity cycle is currently near solar maximum conditions. Humans have tracked this solar cycle continuously since it was discovered in 1843, and it is normal for there to be many flares a day during the sun’s peak activity. The first X-class flare of the current solar cycle occurred in February 2011. The largest X-class flare in this cycle was an X6.9 on Aug. 9, 2011.

Source: NASA

Featured news from related categories:

Technology Org App
Google Play icon
87,551 science & technology articles

Most Popular Articles

  1. An 18 carat gold nugget made of plastic (January 13, 2020)
  2. Anti Solar Cells: A Photovoltaic Cell That Works at Night (February 3, 2020)
  3. Toyota Raize is a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  4. Nuclear waste could be recycled for diamond battery power (January 21, 2020)
  5. Physicist Proposes a Testable Theory Stating that Information has Mass and could Account for Universe s Dark Matter (January 24, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email