Google Play icon

Quantum effects in nanowires at room temperature

Posted August 29, 2013
Quantum effects in nanowires at room temperature

Quantum effects in nanowires at room temperature
The above figures show the standing waves of the conduction electrons in the iridium nanowires. In the nanowire of 4.8 nm (left picture) the half wavelength fits precisely, while the entire wavelength fits in the nanowire of 9.6 nm (right picture).

Nano technologists at the UT research institute MESA+ have, for the first time, demonstrated quantum effects in tiny nanowires of iridium atoms. These effects, which occur at room temperature, are responsible for ensuring that the wires are almost always 4.8 nanometers — or multiples thereof — long. They only found the effects when they failed to create long nanowires of iridium. Today, the leading scientific journal, Nature Communications is publishing the research that was made possible by the FOM Foundation [Foundation for Fundamental Research on Matter].

There is an increasing interest in metallic nanowires within the scientific community. This is partly because they are extremely useful as part of (nano-) electronics and partly because nanowires lend themselves to achieving more insight into the exotic and unique physical properties of one-dimensional systems. In 2003, UT researcher, Prof. Harold Zandvliet and his research group, had already succeeded — using self-assembly — in creating nanowires of platinum atoms on a surface. Because gold and iridium are both closely related to platinum, nanowires of these materials were the following logical steps. The researchers managed to create long threads with gold, but when they recently wanted to repeat the trick with iridium, it appeared that the wire lengths occurred only in units of 4.8 nanometers.

A failure?

Experiment failed, you might think, but that is not the case. Further examination of the nanowires formed produced namely a surprising discovery: nearly all the wires that were formed had a length of 4.8 nanometers, or multiples thereof, and they nearly all contained twelve iridium atoms, or a multiple thereof. The researchers found the explanation for this in quantum effects. The wires of 4.8 nanometers (or multiples thereof) appear to be electronically stabilized by conduction electrons whose (half) wavelength (or a multiple thereof) fits precisely in the nanowire. The existence of these standing electron waves in the nanowires could be demonstrated experimentally. As this stabilizing effect will not occur in nanowires of iridium of a different length, they are formed more slowly.

What makes quantum effects in the nanowires even more interesting is that they occur at room temperature, while many quantum effects appear only at extremely low temperatures.

Source: University of Twente

Featured news from related categories:

Technology Org App
Google Play icon
86,878 science & technology articles

Most Popular Articles

  1. You Might Not Need a Hybrid Car If This Invention Works (January 11, 2020)
  2. Toyota Raize a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  3. An 18 carat gold nugget made of plastic (January 13, 2020)
  4. Human body temperature has decreased in United States, study finds (January 10, 2020)
  5. Often derided as pests, deer and elk can help young Douglas fir trees under some conditions (December 5, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email