Google Play icon

Watching the production of new proteins in live cells

Share
Posted August 27, 2013
Watching the production of new proteins in live cells

Watching the production of new proteins in live cells
This image shows stimulated Raman scattering imaging of newly synthesized protein in live hippocampal neurons incubated in a deuterium-labeled amino acids medium for 20 hours by targeting the unique 2,133 cm_1 vibrational peak of C-D stretching. Credit: Lu Wei, Columbia University

Researchers at Columbia University, in collaboration with biologists in Baylor College of Medicine, have made a significant step in understanding and imaging protein synthesis, pinpointing exactly where and when cells produce new proteins. Assistant Professor Wei Min’s team developed a new technique to produce high-resolution imaging of newly synthesized proteins inside living cells. The findings were published in the July 9th issue of The Proceedings of the National Academy of Sciences(Volume 110; Issue 28).

Proteins carry out almost every crucial biological function. Synthesis of new proteins is a key step in gene expression and is a major process by which cells respond rapidly to environmental cues in physiological and pathological conditions, such as cancer, autism and oxidative stress. A cell’s proteome (i.e., the sum of all the cell’s proteins) is highly dynamic and tightly regulated by both protein synthesis and disposal to maintain homeostasis and ensure normal functioning of the body. Many intricate biological processes, such as cell growth, differentiation and diseases, involve new protein synthesis at a specific location and time. In particular, long-lasting neuronal plasticity (changes in neural pathways and synapses that come from alterations in behavior, environment and bodily injury), such as those underlying learning and long-term memory, require new protein synthesis in a site- and time- dependent manner inside neurons.

Min and colleagues’ new technique harnesses deuterium (a heavier cousin of the normal hydrogen atom), which was first discovered by Harold Urey in 1932, also at Columbia University. When hydrogen is replaced by deuterium, the biochemical activities of amino acids change very little. When added to growth media for culturing cells, these deuterium-labeled amino acids are incorporated by the natural cell machineries as the necessary building blocks for new protein production. Hence, only newly synthesized proteins by living cells will carry the special deuterium atoms connected to carbon atoms. The carbon-deuterium bonds vibrate at a distinct frequency, different from almost all natural chemical bonds existing inside cells.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
85,619 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  4. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  5. How to enable NTFS write support on Mac? (August 26, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email