Google Play icon

Controlling skyrmions for better electronics

Share
Posted August 9, 2013
The image shows a magnetic skyrmion in a hexagonal atom arrangement (transparant spheres). The cones represent the magnetic moments and point up (red) in the skyrmion center and down (green) around it. The rotational sense of the skyrmion for a given system is always the same, as the other rotational sense has a higher energy due to an anisotropic exchange interaction. The magnetic skyrmion in PdFe/Ir(111) that can be created and annihilated with small currents from a scanning tunneling microscope tip consists of roughly 270 surface atoms. Credit: Prof. R. Wiesendanger, University of Hamburg

The image shows a magnetic skyrmion in a hexagonal atom arrangement (transparant spheres). The cones represent the magnetic moments and point up (red) in the skyrmion center and down (green) around it. The rotational sense of the skyrmion for a given system is always the same, as the other rotational sense has a higher energy due to an anisotropic exchange interaction. The magnetic skyrmion in PdFe/Ir(111) that can be created and annihilated with small currents from a scanning tunneling microscope tip consists of roughly 270 surface atoms. Credit: Prof. R. Wiesendanger, University of Hamburg

Physicists at the University of Hamburg managed for the first time to individually write and delete single skyrmions, a knot-like magnetic entity. Such vortex-shaped magnetic structures exhibit unique properties which make them promising candidates for future data storage devices. Skyrmions have been in the focus of active research for the last years; however, up to now these states have been merely investigated, a controlled manipulation has not been achieved.

Now this has been realized by scientists from the group of Prof. Roland Wiesendanger in Hamburg, Germany. As Science reports online on August 8, 2013, the creation and annihilation of single skyrmions, corresponding to writing and deleting of information on a storage medium, has been demonstrated by these researchers. This work solves one of the longstanding technical problems concerning the future use of skyrmions in information technology.

Future electronic devices are expected to become smaller while increasing their data storage capacities at the same time. This will soon bring classical storage technologies to their physical limits. In conventional memory devices used up to now, magnetic bits consist of many atoms with their magnetic moments aligned parallel to each other like bar magnets. Pointing in defined directions, they can represent the values “1” and “0” which are the basis for information technology. With the continuing miniaturization, the interaction between neighboring bits increases due to magnetic stray fields which can lead to loss of data. In addition, small magnetic bits are less stable against thermal fluctuations which is also called the superparamagnetic limit.

Read more at: Phys.org

 

Featured news from related categories:

Technology Org App
Google Play icon
85,465 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. The World's Energy Storage Powerhouse (November 1, 2019)
  4. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email