Google Play icon

Diamonds are a laser scientist’s new best friend

Posted August 7, 2013
Alan Kemp

Alan Kemp

Diamond-based lasers – once a James Bond fantasy – are now becoming a reality, following research at the University of Strathclyde.

Ground-breaking research is harnessing the unique properties of diamonds to develop a new generation of lasers that could lead to a range of benefits, from better treatment of skin complaints and diabetes-related eye conditions, to improved pollution monitoring and aeronautical engineering.

A Strathclyde team has developed a new type of high-performance, ultra-versatile Raman laser that harnesses diamonds to produce light beams with more power and a wider range of colours than current Raman lasers. These capabilities could open up important new applications. The research is funded by the Engineering and Physical Sciences Research Council (EPSRC).

Although researchers in Australia are also working on innovative diamond-based Raman laser technology, the Strathclyde team has achieved two major world firsts:

  • The first ever “tunable” diamond Raman lasers, where the colour of the light can be adjusted to meet specific needs: for example, the treatment of vascular lesions – an abnormal cluster of blood vessels – requires a yellow/orange light that is difficult to produce with conventional lasers but which is needed to maximise absorption by the lesion while minimising damage to surrounding tissue. Underpinning this breakthrough is the fact that diamond’s optical properties enable diamond lasers to produce a range of colours that are hard to generate by conventional means. For example, yellow/orange light which can be used in medicine in the treatment of conditions such as vascular lesions, or retinal bleeding of blood vessels at the back of the eyes.
  • The first ever continuously-operating diamond Raman laser. This is important because lasers that can only provide short pulses of light are unsuited to some medical and other applications – for example, where pulses would damage delicate structures in the eye. In medical treatment for highly sensitive areas, therefore, there are situations where using a pulsed laser would create too much acoustic disturbance.

Professor Martin Dawson, who initiated and oversaw the project at Strathclyde’s Institute of Photonics, said: “Our new lasers can generate light ranging from the lower end of the ultra-violet part of the electromagnetic spectrum, right through the visible part, up to the middle of the infra-red region. That means they can plug many of the existing gaps in lasers’ capabilities.”

Read more at:

Featured news from related categories:

Technology Org App
Google Play icon
86,849 science & technology articles