Google Play icon

Seeing which way the wind blows: New doppler radar takes flight on this summer’s HS3 mission

Share
Posted August 2, 2013
The HIWRAP dual frequency Doppler radar will hang under the Global Hawk. On the left, the golden disc is the antenna and on the right, the two small white discs are the radar beam transmitters, one for each of two frequencies. The whole apparatus spins while flying. Credit: Bill Hrybyk / NASA Read more at: https://phys.org/news/2013-08-doppler-radar-flight-summer-hs3.html#jCp

The HIWRAP dual frequency Doppler radar will hang under the Global Hawk. On the left, the golden disc is the antenna and on the right, the two small white discs are the radar beam transmitters, one for each of two frequencies. The whole apparatus spins while flying. Credit: Bill Hrybyk / NASA

Most aircraft carrying Doppler radar look like they’ve grown a tail, developed a dorsal fin, or sprouted a giant pancake on their backs. But when the unmanned Global Hawk carries a radar system this summer, its cargo will be hard to see. The autonomous and compact High-altitude Imaging Wind and Rain Profiler, or HIWRAP, a dual-frequency conical-scanning Doppler radar, will hang under the aircraft’s belly as it flies above hurricanes to measure wind and rain and to test a new method for retrieving wind data.

HIWRAP is one of the instruments that will fly in this summer’s mission to explore Atlantic Ocean hurricanes. NASA’s Hurricane and Severe Storm Sentinel, or HS3, airborne mission will investigate tropical cyclones using a number of instruments and two Global Hawks. The HS3 mission will operate between Aug. 20 and Sept. 23.

“Radar is an important remote sensor for atmospheric research,” said Lihua Li, an engineer who helped develop HIWRAP at NASA’s Goddard Space Flight Center in Greenbelt, Md. “Radar signals penetrate clouds and precipitation, allowing scientists to detect information on raindrops or ice particles.” That information, he said, is one piece of the puzzle toward improving scientists’ understanding of weather events.

This past year, Li and his colleagues further improved their radar technology to make it more effective at high altitudes. The ultimate goal is using radar to measure weather events from space.

Read more at: Phys.org

 

Featured news from related categories:

Technology Org App
Google Play icon
87,105 science & technology articles

Most Popular Articles

  1. You Might Not Need a Hybrid Car If This Invention Works (January 11, 2020)
  2. Toyota Raize a new cool compact SUV that we will not see in this part of the world (November 24, 2019)
  3. An 18 carat gold nugget made of plastic (January 13, 2020)
  4. Human body temperature has decreased in United States, study finds (January 10, 2020)
  5. Nuclear waste could be recycled for diamond battery power (January 21, 2020)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email