Google Play icon

Tiny bubbles hold big promise for NMR/MRI

Share
Posted July 16, 2013
In this new NMR/MRI technique, hyperpolarized xenon gas bubbled into solution serves as the reporting medium as it moves in and out of a perfluorocarbon nanoemulsion droplet that binds to a molecular target. The contrast stems from the interaction of the distinguishable signals outside and inside the droplets.

In this new NMR/MRI technique, hyperpolarized xenon gas bubbled into solution serves as the reporting medium as it moves in and out of a perfluorocarbon nanoemulsion droplet that binds to a molecular target. The contrast stems from the interaction of the distinguishable signals outside and inside the droplets.

Berkeley Lab researchers have shown that tiny bubbles carrying hyperpolarized xenon gas hold big promise for NMR (nuclear magnetic resonance) and its sister technology, MRI (Magnetic Resonance Imaging), as these xenon carriers can be used to detect the presence and spatial distribution of specific molecules with far greater sensitivity than conventional NMR/MRI. Applications include molecular imaging of complex solid or liquid chemical and environmental samples, as well as biological samples, including the detection and characterization of lung cancer tumors at an earlier stage of development than current detection methodologies.

“Rather than the protons used as the reporting medium in conventional NMR/MRI, our reporting medium is the NMR/MRI-active isotope of xenon (Xe-129),” says chemist Alex Pines, who led this research along with Todd Stevens and Matthew Ramirez.

Pines, a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and the Glenn T. Seaborg Professor of Chemistry at the University of California (UC) Berkeley, is one of the world’s foremost authorities on NMR/MRI.

“Xenon is an ideal reporter because it is inert and nontoxic, and has no background in natural samples,” he says. “It can also be hyperpolarized using established optical techniques, which facilitates detection of xenon NMR contrast agents at sub-picomolar concentrations. This is orders of magnitude below the threshold for detecting proton contrast agents in a conventional NMR/MRI system.”

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
84,692 science & technology articles

Most Popular Articles

  1. Oumuamua 2.0? It Looks Like There is a New Interstellar Object Passing Through the Solar System (September 13, 2019)
  2. Real Artificial Gravity for SpaceX Starship (September 17, 2019)
  3. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  4. How social media altered the good parenting ideal (September 4, 2019)
  5. What's the difference between offensive and defensive hand grenades? (September 26, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email