Google Play icon

Combined team of physicists and biologists build Lyme disease detector using carbon nanotube sensor

Share
Posted June 18, 2013

dfgg[1]

A team made up of researchers from both the physics and biology departments at the University of Pennsylvania has succeeded in building a Lyme disease detector using a carbon nanotube sensor. In their paper published in the journal Biosensors and Bioelectronics, the team describes the process they used to make the device and how it works.

 

Lyme disease is an infection caused by several types of bacteria—generally tick-borne, the disease can cause permanent nerve damage if not detected early. Currently patients must undergo a two-stage process as part of a diagnosis. The first is called an ELISA assay—it uses antibodies and color changes to identify substances. Because it tends to sometimes produce false positives, patients must also undergo what is known as a Western blot test—a test for the specific bacteria that cause the disease. It too tends to result in the occasional false positive however, which is why researchers continue to look for a more accurate way to detect the presence of the bacteria that causes the disease.

In this new effort, the research team grew a large array of carbon nanotubes for use as sensors. Then using a new covalent-chemistry technique they developed they attached antibody proteins to the nanotubes. The antibodies attract and capture a type of protein found in the flagellum of bacteria that are the source of Lyme disease. The adhered protein causes a change in the how well the nanotube sensors are able to conduct electricity. By measuring changes in voltage, the researchers can determine if the bacteria are present in a single drop of blood.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
85,974 science & technology articles

Most Popular Articles

  1. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  2. NASA Scientists Confirm Water Vapor on Europa (November 19, 2019)
  3. This Artificial Leaf Turns Atmospheric Carbon Dioxide Into Fuel (November 8, 2019)
  4. How Do We Colonize Ceres? (November 21, 2019)
  5. Scientists have Discovered a Place on Earth with no Biological Life (November 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email