Google Play icon

Study suggests second life for possible spintronic materials

Share
Posted June 7, 2013
3D rendering of stable manganese gallium nitride surface structure (Courtesy of A.R. Smith).

3D rendering of stable manganese gallium nitride surface structure (Courtesy of A.R. Smith).

Ohio University research merges manganese, gallium nitride in uniform layer

ATHENS, Ohio (June 5, 2013) – Ten years ago, scientists were convinced that a combination of manganese and gallium nitride could be a key material to create spintronics, the next generation of electronic devices that operate on properties found at the nanoscale. But researchers grew discouraged when experiments indicated that the two materials were as harmonious as oil and water.

A new study led by Ohio University physicists suggests that scientists should take another look at this materials duo, which once was heralded for its potential to be the building block for devices that can function at or above room temperature.

“We’ve found a way—at least on the surface of the material—of incorporating a uniform layer,” said Arthur Smith, a professor of physics and astronomy at Ohio University who leads the international collaboration of Argentinian and Spanish researchers.

The scientists made two important changes to create the material merger, they report in the journal Physical Review B. First, they used the nitrogen polarity of gallium nitride, whereas conventional experiments used the gallium polarity to attach to the manganese, Smith explained. Second, they heated the sample.

At lower temperatures (less than 105 degrees Celsius), the manganese atoms “float” on the outer layer of gallium atoms. When the scientists raised the temperature about 100 degrees Celsius, Smith said, the atoms connected to the nitrogen layer underneath, creating a manganese-nitrogen bond. This bond remains stable, even at very high temperatures.

The theoretical scientists accurately predicted that a “triplet” structure of three manganese atoms would form a metastable structure at low temperatures, Smith said. But at higher temperatures, those manganese atoms break apart and bond with nitrogen. Valeria Ferrari of the Centro Atómico Constituyentes said her group performed quantum mechanical simulations to test which model structures have the lowest energy, which suggested both the trimer structure and the manganese-nitrogen bonded structure.

Now that scientists have shown that they can create a stable structure with these materials, they will investigate whether it has the magnetic properties at room temperature necessary to function as a spintronic material.

The study authors are Abhijit Chinchore, Kangkang Wang, Meng Shi, Andrada Mandru, Yinghao Liu, Muhammad Haider and Arthur Smith of the Nanoscale and Quantum Phenomena Institute at Ohio University; Valeria Ferrari and Maria Andrea Barral of the Centro Atómico Constituyentes, GIyA, CNEA, San Martín, Buenos Aires, Argentina; and Pablo Ordejón, Centre d’Investigació en Nanociència i Nanotecnologia, Barcelona, Spain.

The research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (STM studies of nanoscale spintronic nitride systems), the National Science Foundation (advancing nanospintronics through international collaboration), CONICET, ANPCyT and Spanish MICINN . The Ohio Supercomputing Center provided computer time.

 

Featured news from related categories:

Technology Org App
Google Play icon
85,387 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (October 16, 2019)
  4. The World's Energy Storage Powerhouse (November 1, 2019)
  5. Plastic waste may be headed for the microwave (October 18, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email