Google Play icon

How young genes gain a toehold on becoming indispensable

Share
Posted June 7, 2013
Umbrea (green) colocalizes with centromeric histone Cid (red) in Drosophilia melanogaster larval imaginal disc cells (DNA in blue). Umbrea gained essential centromere function within 15 million years of birth. Credit: Malik Lab, Fred Hutchinson Cancer Research Center

Umbrea (green) colocalizes with centromeric histone Cid (red) in Drosophilia melanogaster larval imaginal disc cells (DNA in blue). Umbrea gained essential centromere function within 15 million years of birth. Credit: Malik Lab, Fred Hutchinson Cancer Research Center

Fred Hutchinson Cancer Research Center scientists have, for the first time, mapped a young gene’s short, dramatic evolutionary journey to becoming essential, or indispensable. In a study published online June 6 in Science, the researchers detail one gene’s rapid switch to a new and essential function in the fruit fly, challenging the long-held belief that only ancient genes are important.

“We really haven’t paid much attention to what is new, because there’s so much emphasis on what is old,” said Harmit Singh Malik, Ph.D., a member of the Hutchinson Center’s Basic Sciences Division and senior author of the study. “This work breaks the paradigm that new genes by definition are not really that important, because if they were important they would be much older.”

The less a gene has mutated over the millions or billions of years of its lifespan, the more likely it is to play a key role for its host. But it turns out that the converse is not necessarily true. Young and rapidly evolving genes can be indispensable too. Scientists at the University of Chicago were surprised to find in 2010 that young genes acquire essential functions in the same proportion as old genes, but nobody had explored the biology behind the phenomenon.

Malik and his colleagues examined one such case in detail, starting from the gene’s birth and its pathway to a new purpose and evolutionary importance. The fruit flyDrosophila melanogaster, a common model organism in laboratory studies, is host to the relatively new gene Umbrea, which duplicated and began to diverge from its parent gene a mere 15 million years ago.

The scientists compared Umbrea with its parent gene, HP1B, by looking at where each gene’s protein product tracks within the cell. Both proteins coat chromosomes, but the Umbrea protein specifically hones to centromeres, the specialized centers that help chromosomes duplicate and segregate when cells divide.

Featured news from related categories:



Technology Org App
Google Play icon
86,136 science & technology articles

Most Popular Articles

  1. NASA Scientists Confirm Water Vapor on Europa (November 19, 2019)
  2. Scientists Reverse Dementia in Mice with Anti Inflammatory Drugs (6 days old)
  3. How Do We Colonize Ceres? (November 21, 2019)
  4. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  5. Scientists created a wireless battery free computer input device (December 1, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email