Google Play icon

NASA Experiment Seeks Signatures of Formation of First Stars and Galaxies

Share
Posted June 4, 2013

When did the first stars and galaxies form in the universe and how brightly did they burn? Scientists are looking for tell-tale signs of galaxy formation with an experimental payload called CIBER.

NASA will briefly turn night into day near midnight along the mid-Atlantic coastline on June 4 – seeking answers to illuminate researchers theories about the beginnings of our Universe with the launch of the Cosmic Infrared Background ExpeRiment (CIBER) from NASA’s launch range at the Wallops Flight Facility along Virginia’s eastern shoreline. See viewing map below.

CIBER will blast off atop a powerful four stage Black Brant XII suborbital rocket at 11 PM EDT Tuesday night, June 4. The launch window extends until 11:59 PM EDT.

Currently the weather forecast is excellent.

The public is invited to observe the launch from an excellent viewing site at the NASA Visitor Center at Wallops which will open at 9:30 PM on launch day.

The night launch will be visible to spectators along a long swath of the US East coast from New Jersey to North Carolina; if the skies are clear as CIBER ascends to space to an altitude of over 350 miles and arcs over on a southeasterly trajectory.

Backup launch days are available from June 5 through 10.

Launch visibility map for the CIBER payload launch from NASA Wallops, Va, on June 4, 2013 at 11 PM EDT. Credit: NASA

Launch visibility map for the CIBER payload launch from NASA Wallops, Va, on June 4, 2013 at 11 PM EDT. Credit: NASA

“The objectives of the experiment are of fundamental importance for astrophysics: to probe the process of first galaxy formation. The measurement is extremely difficult technically,” said Jamie Bock, CIBER principal investigator from the California Institute of Technology

Over the past several decades more than 20,000 sounding rockets have blasted off from an array of launch pads at Wallops, which is NASA’s lead center for suborbital science.

NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. CIBER will blast off on June 4 from the NASA Wallops Flight Facility, Virginia. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite. Photo: Jamie Bock/Caltech

NASA’s CIBER experiment seeks clues to the formation of the first stars and galaxies. CIBER will blast off on June 4 from the NASA Wallops Flight Facility, Virginia. It will study the total sky brightness, to probe the component from first stars and galaxies using spectral signatures, and searches for the distinctive spatial pattern seen in this image, produced by large-scale structures from dark matter. This shows a numerical simulation of the density of matter when the universe was one billion years old. Galaxies formation follows the gravitational wells produced by dark matter, where hydrogen gas coalesces, and the first stars ignite. Photo: Jamie Bock/Caltech

The Black Brant XII sounding rocket is over 70 feet tall.

The launch pad sits adjacent to the newly constructed Pad 0A of the Virginia Spaceflight Authority from which the Orbital Sciences Antares rocket blasted off on its maiden flight on April 21, 2013.

“The first massive stars to form in the universe produced copious ultraviolet light that ionized gas from neutral hydrogen. CIBER observes in the near infrared, as the expansion of the universe stretched the original short ultraviolet wavelengths to long near-infrared wavelengths today.”

“CIBER investigates two telltale signatures of first star formation — the total brightness of the sky after subtracting all foregrounds, and a distinctive pattern of spatial variations,” according to Bock.

Preparing the CIBER instrument for flight. The optics and detectors are cooled by liquid nitrogen to -19C (77 K, -312F) during the flight to eliminate infrared emission from the instrument and to achieve the best detector sensitivity. Photo: NASA/Berit Bland

Preparing the CIBER instrument for flight. The optics and detectors are cooled by liquid nitrogen to -19C (77 K, -312F) during the flight to eliminate infrared emission from the instrument and to achieve the best detector sensitivity. Photo: NASA/Berit Bland

This will be the fourth launch of CIBER since 2009 but the first from Wallops. The three prior launches were all from the White Sands Missile Range, N.M. and in each case the payload was recovered and refurbished for reflight.

However the June 4 launch will also be the last hurrah for CIBER.

The scientists are using a more powerful Black Brant rocket to loft the payload far higher than ever before so that it can make measurements for more than twice as long as ever before.

The consequence of flying higher is that CIBER will splashdown in the Atlantic Ocean, about 400 miles off the Virgina shore and will not be recovered.

You can watch the launch live on NASA Ustream beginning at 10 p.m. on launch day at: https://www.ustream.com/channel/nasa-wallops

Ken Kremer via Universe Today

Featured news from related categories:

Technology Org App
Google Play icon
85,974 science & technology articles

Most Popular Articles

  1. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  2. NASA Scientists Confirm Water Vapor on Europa (November 19, 2019)
  3. This Artificial Leaf Turns Atmospheric Carbon Dioxide Into Fuel (November 8, 2019)
  4. How Do We Colonize Ceres? (November 21, 2019)
  5. Scientists have Discovered a Place on Earth with no Biological Life (November 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email