Google Play icon

Moth-inspired nanostructures take the color out of thin films

Share
Posted May 17, 2013
The nanostructures, inspired by the surface of a moth's eye, limit the amount of light reflected at the thin-film interfaces. Credit: Chih-hao Chang, North Carolina State University

The nanostructures, inspired by the surface of a moth’s eye, limit the amount of light reflected at the thin-film interfaces. Credit: Chih-hao Chang, North Carolina State University

Inspired by the structure of moth eyes, researchers at North Carolina State University have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the “thin-film interference” phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices.

 

Thin-film interference occurs when a thin film of one substance lies on top of a second substance. For example, thin-film interference is what causes the rainbow sheen we see when there is gasoline in a puddle of water.

Gasoline is transparent, but some light is still reflected off of its surface. Similarly, some of the light that passes through the gasoline is reflected off the underlying surface of the water where the two substances interface, or meet. Because the light reflected off the water has to pass back through the gasoline, it takes a slightly different optical path than the light that was reflected off the surface of the gasoline. The mismatch of these optical path “lengths” is what creates the rainbow sheen – and that phenomenon is thin-film interference.

Thin-film interference is a problem for devices that use multiple layers of thin films, like thin-film solar cells, because it means that some wavelengths of light are being reflected – or “lost” – at every film interface. The more thin films a device has, the more interfaces there are, and the more light is lost.

“We were inspired by the surface structure of a moth’s eye, which has evolved so that it doesn’t reflect light,” says Dr. Chih-Hao Chang, an assistant professor of mechanical and aerospace engineering at NC State and co-author of a paper on the research. “By mimicking that concept, we’ve developed a nanostructure that significantly minimizes thin-film interference.”

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
84,804 science & technology articles

Most Popular Articles

  1. New Class of Painkillers Offers all the Benefits of Opioids, Minus the Side Effects and Addictiveness (Yesterday)
  2. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  3. How social media altered the good parenting ideal (September 4, 2019)
  4. What's the difference between offensive and defensive hand grenades? (September 26, 2019)
  5. Just How Feasible is a Warp Drive? (September 25, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email