Google Play icon

Sharper images for extreme Linac Coherent Light Source experiments

Share
Posted April 18, 2013
The Matter in Extreme Conditions (MEC) station at SLAC's Linac Coherent Light Source. Credit: Matt Beardsley

The Matter in Extreme Conditions (MEC) station at SLAC’s Linac Coherent Light Source. Credit: Matt Beardsley

An imaging technique conceived 50 years ago has been successfully demonstrated at SLAC’s Linac Coherent Light Source, where it is expected to improve results in a range of experiments, including studies of extreme states of matter formed by shock waves.

The method, called ptychography (tie-KAW-grah-fee), was originally developed to capture data that was otherwise missing or difficult to collect in crystallography experiments, in which X-ray light scatters off crystallized samples to form diffraction patterns that reveal the sample’s structure.

In this image showing the setup of an LCLS experiment using ptychography, X-ray pulses strike a nanoscale sample with a geometric pattern, producing diffraction images that allow researchers to reconstruct the shape of the sample and measure properties of the pulses. Credit: Andreas Schropp/Nature Scientific Reports

In this image showing the setup of an LCLS experiment using ptychography, X-ray pulses strike a nanoscale sample with a geometric pattern, producing diffraction images that allow researchers to reconstruct the shape of the sample and measure properties of the pulses. Credit: Andreas Schropp/Nature Scientific Reports

In recent years, ptychography has been rediscovered as a powerful tool for measuring the properties of X-ray beams and understanding imperfections in the focusing tools at synchrotrons and other X-ray research facilities, allowing scientists to better interpret and refine their data.

n experiments last year at the LCLS, researchers used ptychography to sharpen images made with the Matter in Extreme Conditions instrument, which specializes in transforming materials into ultrahot, ultradense states.

“For imaging it’s very important,” said Andreas Schropp, a visiting physicist who was the lead author of a paper focusing on the LCLS experiment, published April 9 in Nature Publishing Group’s Scientific Reports. “Without it, you are not able to separate the properties of the X-ray pulses from the real features you have in the sample.”

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
85,465 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  3. The World's Energy Storage Powerhouse (November 1, 2019)
  4. Plastic waste may be headed for the microwave (October 18, 2019)
  5. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email