Google Play icon

Single photon from a quantum emitter? It’s a matter of timing…

Share
Posted April 9, 2013
Plots of photon arrival times at each of two detectors show that the emission of only one photon following an excitation pulse is less likely than had been widely assumed.

Plots of photon arrival times at each of two detectors show that the emission of only one photon following an excitation pulse is less likely than had been widely assumed.

Many systems envisioned for practical quantum information processing require the use of single, indistinguishable photons as carriers of information and logic operators. So researchers in the field need to be certain that their light sources can dependably produce individual photons in identical states.

The customary method of doing so involves analyzing temporal differences between photons generated by laser excitation pulses, and treats those differences as a static process. That is, only differences between photon detections are analyzed, and it does not matter when in the emission cycle the photons are detected.

But PML scientists recently devised a new method of examining the output of single quantum emitters, and discovered that in many situations the differences between photon events are not static, and thus both single-photon “purity” and consecutive-photon indistinguishability fluctuate dynamically over excitation-emission time scales. They also created a model to explain the physics of the phenomenon.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
84,790 science & technology articles

Most Popular Articles

  1. Top NASA Manager Says the 2024 Moon Landing by Astronauts might not Happen (September 19, 2019)
  2. How social media altered the good parenting ideal (September 4, 2019)
  3. What's the difference between offensive and defensive hand grenades? (September 26, 2019)
  4. Just How Feasible is a Warp Drive? (September 25, 2019)
  5. NASA's Curiosity Rover Finds an Ancient Oasis on Mars (October 8, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email