Google Play icon

Semiconductor ‘shish kabob’ nanostructures combine properties from different dimensions

Share
Posted March 28, 2013
2D nanosheets grown on a 1D nanowire can combine the advantages of both dimensionalities and may enable novel functions that cannot be obtained from each of the components separately. Credit: Chun Li, et al. ©2013 American Chemical Society

2D nanosheets grown on a 1D nanowire can combine the advantages of both dimensionalities and may enable novel functions that cannot be obtained from each of the components separately. Credit: Chun Li, et al. ©2013 American Chemical Society

By growing 2D nanosheets along the surface of a 1D nanowire, scientists have synthesized a new 3D nanoscale heterostructure that they call—for appropriate reasons—”shish kabobs.” Due to the integration of the two dimensionalities, the new structures could have a wide variety of applications, such as for solar energy conversion, energy storage, and photonics.


The scientists, Chun Li, et al., at North Carolina University in Raleigh, North Carolina; and Oak Ridge National Laboratory in Oak Ridge, Tennessee, have published a paper on the nanosheet-nanowire heterostructures in a recent issue of Nano Letters.

So far, most research on growing nanoscale heterostructures has focused on combining materials that have the same dimensions. Studies that involve combining materials with different dimensions have remained limited because it is much more difficult to integrate these materials into a single structure due to their different growth mechanisms.

Read more at: Phys.org

Featured news from related categories:

Technology Org App
Google Play icon
85,582 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  4. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  5. ‘Artificial leaf’ successfully produces clean gas (October 22, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email