Google Play icon

Mixed graphene and molybdenite makes efficient flash memory

Share
Posted March 20, 2013

nn-2012-059136_0006[1]

Memory cells are an important building block of digital electronics. We combine here the unique electronic properties of semiconducting monolayer MoS2 with the high conductivity of graphene to build a 2D heterostructure capable of information storage. MoS2 acts as a channel in an intimate contact with graphene electrodes in a field-effect transistor geometry. Our prototypical all-2D transistor is further integrated with a multilayer graphene charge trapping layer into a device that can be operated as a nonvolatile memory cell. Because of its band gap and 2D nature, monolayer MoS2 is highly sensitive to the presence of charges in the charge trapping layer, resulting in a factor of 104 difference between memory program and erase states. The two-dimensional nature of both the contact and the channel can be harnessed for the fabrication of flexible nanoelectronic devices with large-scale integration.

Source: ACS Nano

Featured news from related categories:

Technology Org App
Google Play icon
85,582 science & technology articles

Most Popular Articles

  1. New treatment may reverse celiac disease (October 22, 2019)
  2. The World's Energy Storage Powerhouse (November 1, 2019)
  3. Universe is a Sphere and Not Flat After All According to a New Research (November 7, 2019)
  4. "Helical Engine" Proposed by NASA Engineer could Reach 99% the Speed of Light. But could it, really? (October 17, 2019)
  5. ‘Artificial leaf’ successfully produces clean gas (October 22, 2019)

Follow us

Facebook   Twitter   Pinterest   Tumblr   RSS   Newsletter via Email